Tôi đang thực hiện một số thực hành mã và áp dụng hợp nhất các khung dữ liệu trong khi thực hiện việc này thì nhận được cảnh báo của người dùng
/usr/lib64/python2.7/site-packages/pandas/core/frame.py:6201: FutureWarning: Sắp xếp do trục không nối không được căn chỉnh. Phiên bản gấu trúc trong tương lai sẽ thay đổi thành không sắp xếp theo mặc định. Để chấp nhận hành vi trong tương lai, hãy chuyển 'sort = True'. Để giữ lại hành vi hiện tại và tắt tiếng cảnh báo, hãy chuyển sort = False
Trên những dòng mã này: Bạn có thể vui lòng giúp đỡ để có được giải pháp của cảnh báo này không.
placement_video = [self.read_sql_vdx_summary, self.read_sql_video_km]
placement_video_summary = reduce(lambda left, right: pd.merge(left, right, on='PLACEMENT', sort=False), placement_video)
placement_by_video = placement_video_summary.loc[:, ["PLACEMENT", "PLACEMENT_NAME", "COST_TYPE", "PRODUCT",
"VIDEONAME", "VIEW0", "VIEW25", "VIEW50", "VIEW75",
"VIEW100",
"ENG0", "ENG25", "ENG50", "ENG75", "ENG100", "DPE0",
"DPE25",
"DPE50", "DPE75", "DPE100"]]
# print (placement_by_video)
placement_by_video["Placement# Name"] = placement_by_video[["PLACEMENT",
"PLACEMENT_NAME"]].apply(lambda x: ".".join(x),
axis=1)
placement_by_video_new = placement_by_video.loc[:,
["PLACEMENT", "Placement# Name", "COST_TYPE", "PRODUCT", "VIDEONAME",
"VIEW0", "VIEW25", "VIEW50", "VIEW75", "VIEW100",
"ENG0", "ENG25", "ENG50", "ENG75", "ENG100", "DPE0", "DPE25",
"DPE50", "DPE75", "DPE100"]]
placement_by_km_video = [placement_by_video_new, self.read_sql_km_for_video]
placement_by_km_video_summary = reduce(lambda left, right: pd.merge(left, right, on=['PLACEMENT', 'PRODUCT'], sort=False),
placement_by_km_video)
#print (list(placement_by_km_video_summary))
#print(placement_by_km_video_summary)
#exit()
# print(placement_by_video_new)
"""Conditions for 25%view"""
mask17 = placement_by_km_video_summary["PRODUCT"].isin(['Display', 'Mobile'])
mask18 = placement_by_km_video_summary["COST_TYPE"].isin(["CPE", "CPM", "CPCV"])
mask19 = placement_by_km_video_summary["PRODUCT"].isin(["InStream"])
mask20 = placement_by_km_video_summary["COST_TYPE"].isin(["CPE", "CPM", "CPE+", "CPCV"])
mask_video_video_completions = placement_by_km_video_summary["COST_TYPE"].isin(["CPCV"])
mask21 = placement_by_km_video_summary["COST_TYPE"].isin(["CPE+"])
mask22 = placement_by_km_video_summary["COST_TYPE"].isin(["CPE", "CPM"])
mask23 = placement_by_km_video_summary["PRODUCT"].isin(['Display', 'Mobile', 'InStream'])
mask24 = placement_by_km_video_summary["COST_TYPE"].isin(["CPE", "CPM", "CPE+"])
choice25video_eng = placement_by_km_video_summary["ENG25"]
choice25video_vwr = placement_by_km_video_summary["VIEW25"]
choice25video_deep = placement_by_km_video_summary["DPE25"]
placement_by_km_video_summary["25_pc_video"] = np.select([mask17 & mask18, mask19 & mask20, mask17 & mask21],
[choice25video_eng, choice25video_vwr, choice25video_deep])
"""Conditions for 50%view"""
choice50video_eng = placement_by_km_video_summary["ENG50"]
choice50video_vwr = placement_by_km_video_summary["VIEW50"]
choice50video_deep = placement_by_km_video_summary["DPE50"]
placement_by_km_video_summary["50_pc_video"] = np.select([mask17 & mask18, mask19 & mask20, mask17 & mask21],
[choice50video_eng,
choice50video_vwr, choice50video_deep])
"""Conditions for 75%view"""
choice75video_eng = placement_by_km_video_summary["ENG75"]
choice75video_vwr = placement_by_km_video_summary["VIEW75"]
choice75video_deep = placement_by_km_video_summary["DPE75"]
placement_by_km_video_summary["75_pc_video"] = np.select([mask17 & mask18, mask19 & mask20, mask17 & mask21],
[choice75video_eng,
choice75video_vwr,
choice75video_deep])
"""Conditions for 100%view"""
choice100video_eng = placement_by_km_video_summary["ENG100"]
choice100video_vwr = placement_by_km_video_summary["VIEW100"]
choice100video_deep = placement_by_km_video_summary["DPE100"]
choicecompletions = placement_by_km_video_summary['COMPLETIONS']
placement_by_km_video_summary["100_pc_video"] = np.select([mask17 & mask22, mask19 & mask24, mask17 & mask21, mask23 & mask_video_video_completions],
[choice100video_eng, choice100video_vwr, choice100video_deep, choicecompletions])
"""conditions for 0%view"""
choice0video_eng = placement_by_km_video_summary["ENG0"]
choice0video_vwr = placement_by_km_video_summary["VIEW0"]
choice0video_deep = placement_by_km_video_summary["DPE0"]
placement_by_km_video_summary["Views"] = np.select([mask17 & mask18, mask19 & mask20, mask17 & mask21],
[choice0video_eng,
choice0video_vwr,
choice0video_deep])
#print (placement_by_km_video_summary)
#exit()
#final Table
placement_by_video_summary = placement_by_km_video_summary.loc[:,
["PLACEMENT", "Placement# Name", "PRODUCT", "VIDEONAME", "COST_TYPE",
"Views", "25_pc_video", "50_pc_video", "75_pc_video","100_pc_video",
"ENGAGEMENTS","IMPRESSIONS", "DPEENGAMENTS"]]
#placement_by_km_video = [placement_by_video_summary, self.read_sql_km_for_video]
#placement_by_km_video_summary = reduce(lambda left, right: pd.merge(left, right, on=['PLACEMENT', 'PRODUCT']),
#placement_by_km_video)
#print(placement_by_video_summary)
#exit()
# dup_col =["IMPRESSIONS","ENGAGEMENTS","DPEENGAMENTS"]
# placement_by_video_summary.loc[placement_by_video_summary.duplicated(dup_col),dup_col] = np.nan
# print ("Dhar",placement_by_video_summary)
'''adding views based on conditions'''
#filter maximum value from videos
placement_by_video_summary_new = placement_by_km_video_summary.loc[
placement_by_km_video_summary.reset_index().groupby(['PLACEMENT', 'PRODUCT'])['Views'].idxmax()]
#print (placement_by_video_summary_new)
#exit()
# print (placement_by_video_summary_new)
# mask22 = (placement_by_video_summary_new.PRODUCT.str.upper ()=='DISPLAY') & (placement_by_video_summary_new.COST_TYPE=='CPE')
placement_by_video_summary_new.loc[mask17 & mask18, 'Views'] = placement_by_video_summary_new['ENGAGEMENTS']
placement_by_video_summary_new.loc[mask19 & mask20, 'Views'] = placement_by_video_summary_new['IMPRESSIONS']
placement_by_video_summary_new.loc[mask17 & mask21, 'Views'] = placement_by_video_summary_new['DPEENGAMENTS']
#print (placement_by_video_summary_new)
#exit()
placement_by_video_summary = placement_by_video_summary.drop(placement_by_video_summary_new.index).append(
placement_by_video_summary_new).sort_index()
placement_by_video_summary["Video Completion Rate"] = placement_by_video_summary["100_pc_video"] / \
placement_by_video_summary["Views"]
placement_by_video_final = placement_by_video_summary.loc[:,
["Placement# Name", "PRODUCT", "VIDEONAME", "Views",
"25_pc_video", "50_pc_video", "75_pc_video", "100_pc_video",
"Video Completion Rate"]]
In a future version of pandas pandas.concat() and DataFrame.append() will no longer sort the non-concatenation axis when it is not already aligned.
a lànon-concatenation axis
gì và kết quả sẽ như thế nào? cột a và cột b sẽ không khớp nhau? hay chỉ thứ tự cột là khác nhau?