Unmelt chỉ một phần của một cột từ dataframe gấu trúc


9

Tôi có ví dụ về khung dữ liệu sau:

df = pd.DataFrame(data = {'RecordID' : [1,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5], 'DisplayLabel' : ['Source','Test','Value 1','Value 2','Value3','Source','Test','Value 1','Value 2','Source','Test','Value 1','Value 2','Source','Test','Value 1','Value 2','Source','Test','Value 1','Value 2'],
'Value' : ['Web','Logic','S','I','Complete','Person','Voice','>20','P','Mail','OCR','A','I','Dictation','Understandable','S','I','Web','Logic','R','S']})

tạo ra khung dữ liệu này:

+-------+----------+---------------+----------------+
| Index | RecordID | Display Label |     Value      |
+-------+----------+---------------+----------------+
|     0 |        1 | Source        | Web            |
|     1 |        1 | Test          | Logic          |
|     2 |        1 | Value 1       | S              |
|     3 |        1 | Value 2       | I              |
|     4 |        1 | Value 3       | Complete       |
|     5 |        2 | Source        | Person         |
|     6 |        2 | Test          | Voice          |
|     7 |        2 | Value 1       | >20            |
|     8 |        2 | Value 2       | P              |
|     9 |        3 | Source        | Mail           |
|    10 |        3 | Test          | OCR            |
|    11 |        3 | Value 1       | A              |
|    12 |        3 | Value 2       | I              |
|    13 |        4 | Source        | Dictation      |
|    14 |        4 | Test          | Understandable |
|    15 |        4 | Value 1       | S              |
|    16 |        4 | Value 2       | I              |
|    17 |        5 | Source        | Web            |
|    18 |        5 | Test          | Logic          |
|    19 |        5 | Value 1       | R              |
|    20 |        5 | Value 2       | S              |
+-------+----------+---------------+----------------+

Tôi đang cố gắng "unmelt" mặc dù không chính xác các cột nguồn và kiểm tra thành các cột khung dữ liệu mới sao cho nó sẽ trông như thế này:

+-------+----------+-----------+----------------+---------------+----------+
| Index | RecordID |  Source   |      Test      | Result        |  Value   |
+-------+----------+-----------+----------------+---------------+----------+
|     0 |        1 | Web       | Logic          | Value 1       | S        |
|     1 |        1 | Web       | Logic          | Value 2       | I        |
|     2 |        1 | Web       | Logic          | Value 3       | Complete |
|     3 |        2 | Person    | Voice          | Value 1       | >20      |
|     4 |        2 | Person    | Voice          | Value 2       | P        |
|     5 |        3 | Mail      | OCR            | Value 1       | A        |
|     6 |        3 | Mail      | OCR            | Value 2       | I        |
|     7 |        4 | Dictation | Understandable | Value 1       | S        |
|     8 |        4 | Dictation | Understandable | Value 2       | I        |
|     9 |        5 | Web       | Logic          | Value 1       | R        |
|    10 |        5 | Web       | Logic          | Value 2       | S        |
+-------+----------+-----------+----------------+---------------+----------+

Theo hiểu biết của tôi, trục và tan chảy sẽ thực hiện toàn bộ cột DisplayLabel chứ không chỉ một số giá trị.

Bất kỳ trợ giúp sẽ được đánh giá rất cao vì tôi đã đọc Pandas MeltPandas Pivot cũng như một số tài liệu tham khảo về stackoverflow và tôi dường như không thể tìm ra cách để làm điều này một cách nhanh chóng.

Cảm ơn!


Làm thế nào để bạn biết Kiểm tra kết quả nào trong DataFrame gốc của bạn được liên kết với? Ví dụ: trong chỉ mục 2, làm thế nào để bạn biết điều đó Value 1nằm dưới Logichàng Kiểm tra trong DataFrame thứ hai của bạn?
Nathan Clement

Xin chào! Tôi đã mắc một lỗi trong bảng cuối cùng, vì ID hồ sơ nhóm tất cả các nguồn và giá trị lại với nhau. Lời xin lỗi.
Jon

Câu trả lời:


6

Chúng tôi có thể đạt được kết quả của bạn bằng cách áp dụng logic và xoay vòng, chúng tôi chia dữ liệu của bạn bằng cách kiểm tra nếu DisplayLabelValuevà sau đó chúng tôijoin quay lại với nhau:

mask = df['DisplayLabel'].str.contains('Value')
df2 = df[~mask].pivot(index='RecordID', columns='DisplayLabel', values='Value')

dfpiv = (
    df[mask].rename(columns={'DisplayLabel':'Result'})
            .set_index('RecordID')
            .join(df2)
            .reset_index()
)
    RecordID   Result     Value     Source            Test
0          1  Value 1         S        Web           Logic
1          1  Value 2         I        Web           Logic
2          1   Value3  Complete        Web           Logic
3          2  Value 1       >20     Person           Voice
4          2  Value 2         P     Person           Voice
5          3  Value 1         A       Mail             OCR
6          3  Value 2         I       Mail             OCR
7          4  Value 1         S  Dictation  Understandable
8          4  Value 2         I  Dictation  Understandable
9          5  Value 1         R        Web           Logic
10         5  Value 2         S        Web           Logic

Nếu bạn muốn thứ tự cột chính xác làm ví dụ của bạn, hãy sử dụng DataFrame.reindex:

dfpiv.reindex(columns=['RecordID', 'Source', 'Test', 'Result', 'Value'])

    RecordID     Source            Test   Result     Value
0          1        Web           Logic  Value 1         S
1          1        Web           Logic  Value 2         I
2          1        Web           Logic   Value3  Complete
3          2     Person           Voice  Value 1       >20
4          2     Person           Voice  Value 2         P
5          3       Mail             OCR  Value 1         A
6          3       Mail             OCR  Value 2         I
7          4  Dictation  Understandable  Value 1         S
8          4  Dictation  Understandable  Value 2         I
9          5        Web           Logic  Value 1         R
10         5        Web           Logic  Value 2         S

Cụ thể - từng bước một:

# mask all rows where "Value" is in column DisplayLabel
mask = df['DisplayLabel'].str.contains('Value')

0     False
1     False
2      True
3      True
4      True
5     False
6     False
7      True
8      True
9     False
10    False
11     True
12     True
13    False
14    False
15     True
16     True
17    False
18    False
19     True
20     True
Name: DisplayLabel, dtype: bool
# select all rows which do NOT have "Value" in DisplayLabel
df[~mask]

    RecordID DisplayLabel           Value
0          1       Source             Web
1          1         Test           Logic
5          2       Source          Person
6          2         Test           Voice
9          3       Source            Mail
10         3         Test             OCR
13         4       Source       Dictation
14         4         Test  Understandable
17         5       Source             Web
18         5         Test           Logic
# pivot the values in DisplayLabel to columns
df2 = df[~mask].pivot(index='RecordID', columns='DisplayLabel', values='Value')

DisplayLabel     Source            Test
RecordID                               
1                   Web           Logic
2                Person           Voice
3                  Mail             OCR
4             Dictation  Understandable
5                   Web           Logic
df[mask].rename(columns={'DisplayLabel':'Result'}) # rename the column DisplayLabel to Result
            .set_index('RecordID')                 # set RecordId as index so we can join df2 
            .join(df2)                             # join df2 back to our dataframe based RecordId
            .reset_index()                         # reset index so we get RecordId back as column

    RecordID   Result     Value     Source            Test
0          1  Value 1         S        Web           Logic
1          1  Value 2         I        Web           Logic
2          1   Value3  Complete        Web           Logic
3          2  Value 1       >20     Person           Voice
4          2  Value 2         P     Person           Voice
5          3  Value 1         A       Mail             OCR
6          3  Value 2         I       Mail             OCR
7          4  Value 1         S  Dictation  Understandable
8          4  Value 2         I  Dictation  Understandable
9          5  Value 1         R        Web           Logic
10         5  Value 2         S        Web           Logic

Bạn có thể vui lòng chi tiết những gì các bước của bạn đang làm? Tôi nghĩ rằng tôi làm theo, nhưng đối với tôi và những người khác trên StackOverflow, nó có thể rất hữu ích. Đặc biệt, nếu bạn có nhiều cột hơn, bạn sẽ sửa đổi nó như thế nào. Cảm ơn rất nhiều cho giải pháp!
Jon

Chắc chắn, xem chỉnh sửa, tôi đã viết một giải thích chi tiết. Hy vọng điều này sẽ giúp @Jon
Erfan

Cảm ơn nhiều @Erfan! Tôi đang gặp phải một lỗi kỳ lạ khi tôi đến bước xoay vòng, tôi tiếp tục nhận được điều này: Chỉ mục chứa các mục trùng lặp, không thể định hình lại. Có ý kiến ​​gì không?
Jon

6

set_index, unstacksau đómelt

df.set_index(['RecordID', 'DisplayLabel']).Value.unstack().reset_index() \
  .melt(['RecordID', 'Source', 'Test'], var_name='Result', value_name='Value') \
  .sort_values('RecordID').dropna(subset=['Value'])

    RecordID     Source            Test   Result     Value
0          1        Web           Logic  Value 1         S
5          1        Web           Logic  Value 2         I
10         1        Web           Logic  Value 3  Complete
1          2     Person           Voice  Value 1       >20
6          2     Person           Voice  Value 2         P
2          3       Mail             OCR  Value 1         A
7          3       Mail             OCR  Value 2         I
3          4  Dictation  Understandable  Value 1         S
8          4  Dictation  Understandable  Value 2         I
4          5        Web           Logic  Value 1         R
9          5        Web           Logic  Value 2         S

Chức năng tùy chỉnh cho groupby

def f(t):
    name, df = t
    d = dict(zip(df['DisplayLabel'], df['Value']))
    source = d.pop('Source')
    test = d.pop('Test')
    result, value = zip(*d.items())

    return pd.DataFrame(
        dict(RecordID=name, Source=source, Test=test, Result=result, Value=value)
    )

pd.concat(map(f, df.groupby('RecordID')))

   RecordID     Source            Test   Result     Value
0         1        Web           Logic  Value 1         S
1         1        Web           Logic  Value 2         I
2         1        Web           Logic  Value 3  Complete
0         2     Person           Voice  Value 1       >20
1         2     Person           Voice  Value 2         P
0         3       Mail             OCR  Value 1         A
1         3       Mail             OCR  Value 2         I
0         4  Dictation  Understandable  Value 1         S
1         4  Dictation  Understandable  Value 2         I
0         5        Web           Logic  Value 1         R
1         5        Web           Logic  Value 2         S

Thiết lập

df = pd.DataFrame(data={
    'RecordID': [1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5],
    'DisplayLabel': [
        'Source', 'Test', 'Value 1', 'Value 2', 'Value 3',
        'Source', 'Test', 'Value 1', 'Value 2',
        'Source', 'Test', 'Value 1', 'Value 2',
        'Source', 'Test', 'Value 1', 'Value 2',
        'Source', 'Test', 'Value 1', 'Value 2'
    ],
    'Value': [
        'Web', 'Logic', 'S', 'I', 'Complete',
        'Person', 'Voice', '>20', 'P',
        'Mail', 'OCR', 'A', 'I',
        'Dictation', 'Understandable', 'S', 'I',
        'Web', 'Logic', 'R', 'S'
    ]
})

Bạn có thể vui lòng chi tiết những gì các bước của bạn đang làm? Tôi nghĩ rằng tôi làm theo, nhưng đối với tôi và những người khác trên StackOverflow, nó có thể rất hữu ích. Đặc biệt, nếu bạn có nhiều cột hơn, bạn sẽ sửa đổi nó như thế nào. Cảm ơn rất nhiều cho giải pháp!
Jon

0

Tôi đã thử một cách tiếp cận khác với lần đầu tiên pivotsử dụng unstackvà sau đó chuyển đổi một phần wide_to_long(Xin lỗi nếu nó không hiệu quả nhưng điều này dường như có được đầu ra mong muốn)

# first converting all long to wide
df2 = df.set_index(['RecordID','DisplayLabel']).unstack()
# flattening the unstacked columns
df2.columns = df2.columns.to_series().str.join('_')
df2.columns = df2.columns.str.replace('Value_','',regex=True) #just removing the junk in the column name
df2 = df2.reset_index() #resetting index to access RecordID

df2 = (pd.melt(df2,id_vars=['RecordID',"Source","Test"],var_name='Result', value_name='Value')
.sort_values(['RecordID',"Source","Test"])
.dropna()
.reset_index())
index   RecordID    Source  Test    Result  Value
0   0   1   Web Logic   Value 1 S
1   5   1   Web Logic   Value 2 I
2   10  1   Web Logic   Value 3 Complete
3   1   2   Person  Voice   Value 1 >20
4   6   2   Person  Voice   Value 2 P
5   2   3   Mail    OCR Value 1 A
6   7   3   Mail    OCR Value 2 I
7   3   4   Dictation   Understandable  Value 1 S
8   8   4   Dictation   Understandable  Value 2 I
9   4   5   Web Logic   Value 1 R
10  9   5   Web Logic   Value 2 S
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.