Tôi đã cố gắng viết lại một số mã đọc csv để có thể chạy nó trên nhiều lõi trong Python 3.2.2. Tôi đã cố gắng sử dụng Pool
đối tượng đa xử lý, đối tượng mà tôi đã điều chỉnh từ các ví dụ làm việc (và đã làm việc cho tôi cho một phần khác của dự án của tôi). Tôi gặp phải thông báo lỗi mà tôi thấy khó giải mã và khắc phục sự cố.
Lỗi:
Traceback (most recent call last):
File "parser5_nodots_parallel.py", line 256, in <module>
MG,ppl = csv2graph(r)
File "parser5_nodots_parallel.py", line 245, in csv2graph
node_chunks)
File "/Library/Frameworks/Python.framework/Versions/3.2/lib/python3.2/multiprocessing/pool.py", line 251, in map
return self.map_async(func, iterable, chunksize).get()
File "/Library/Frameworks/Python.framework/Versions/3.2/lib/python3.2/multiprocessing/pool.py", line 552, in get
raise self._value
AttributeError: __exit__
Mã liên quan:
import csv
import time
import datetime
import re
from operator import itemgetter
from multiprocessing import Pool
import itertools
def chunks(l,n):
"""Divide a list of nodes `l` in `n` chunks"""
l_c = iter(l)
while 1:
x = tuple(itertools.islice(l_c,n))
if not x:
return
yield x
def csv2nodes(r):
strptime = time.strptime
mktime = time.mktime
l = []
ppl = set()
pattern = re.compile(r"""[A-Za-z0-9"/]+?(?=[,\n])""")
for row in r:
with pattern.findall(row) as f:
cell = int(f[3])
id = int(f[2])
st = mktime(strptime(f[0],'%d/%m/%Y'))
ed = mktime(strptime(f[1],'%d/%m/%Y'))
# collect list
l.append([(id,cell,{1:st,2: ed})])
# collect separate sets
ppl.add(id)
return (l,ppl)
def csv2graph(source):
MG=nx.MultiGraph()
# Remember that I use integers for edge attributes, to save space! Dic above.
# start: 1
# end: 2
p = Pool()
node_divisor = len(p._pool)
node_chunks = list(chunks(source,int(len(source)/int(node_divisor))))
num_chunks = len(node_chunks)
pedgelists = p.map(csv2nodes,
node_chunks)
ll = []
ppl = set()
for l in pedgelists:
ll.append(l[0])
ppl.update(l[1])
MG.add_edges_from(ll)
return (MG,ppl)
with open('/Users/laszlosandor/Dropbox/peers_prisons/python/codetenus_test.txt','r') as source:
r = source.readlines()
MG,ppl = csv2graph(r)
Cách tốt để khắc phục sự cố này là gì?
None
do các vấn đề về phạm vi.