Các bước thực hiện trong phân tích nhân tố so với các bước thực hiện trong PCA


12

Tôi biết cách thực hiện PCA (phân tích thành phần chính), nhưng tôi muốn biết các bước nên được sử dụng để phân tích nhân tố.

Để thực hiện PCA, chúng ta hãy xem xét một số ma trận , ví dụ:Một

         3     1    -1
         2     4     0
         4    -2    -5
        11    22    20

Tôi đã tính ma trận tương quan của nó B = corr(A):

        1.0000    0.9087    0.9250
        0.9087    1.0000    0.9970
        0.9250    0.9970    1.0000

Sau đó, tôi đã thực hiện phân tách eigenvalue [V,D] = eig(B), dẫn đến các hàm riêng:

        0.5662    0.8209   -0.0740
        0.5812   -0.4613   -0.6703
        0.5844   -0.3366    0.7383

và giá trị bản địa:

        2.8877         0         0
             0    0.1101         0
             0         0    0.0022

1 giá trị đơn lẻ , sau đó chúng ta đang sử dụng xoay vòng các yếu tố, xin vui lòng cho tôi biết làm thế nào được thực hiện? Ví dụ trong trường hợp này.

Xin hãy giúp tôi hiểu các bước phân tích nhân tố, so với các bước PCA.

Câu trả lời:


24

Câu trả lời này là để cho thấy sự tương đồng và khác biệt về tính toán cụ thể giữa phân tích PCA và Factor. Để biết sự khác biệt lý thuyết chung giữa chúng, xem câu hỏi / câu trả lời 1 , 2 , 3 , 4 , 5 .

Dưới đây tôi sẽ làm, từng bước, phân tích thành phần chính (PCA) của dữ liệu mống mắt (chỉ các loài "setosa") và sau đó sẽ thực hiện phân tích nhân tố của cùng một dữ liệu. Phân tích nhân tố (FA) sẽ được thực hiện bằng phương pháp lặp trục chính ( PAF ) dựa trên phương pháp PCA và do đó làm cho người ta có thể so sánh từng bước PCA và FA.

Dữ liệu Iris (chỉ setosa):

  id  SLength   SWidth  PLength   PWidth species 

   1      5.1      3.5      1.4       .2 setosa 
   2      4.9      3.0      1.4       .2 setosa 
   3      4.7      3.2      1.3       .2 setosa 
   4      4.6      3.1      1.5       .2 setosa 
   5      5.0      3.6      1.4       .2 setosa 
   6      5.4      3.9      1.7       .4 setosa 
   7      4.6      3.4      1.4       .3 setosa 
   8      5.0      3.4      1.5       .2 setosa 
   9      4.4      2.9      1.4       .2 setosa 
  10      4.9      3.1      1.5       .1 setosa 
  11      5.4      3.7      1.5       .2 setosa 
  12      4.8      3.4      1.6       .2 setosa 
  13      4.8      3.0      1.4       .1 setosa 
  14      4.3      3.0      1.1       .1 setosa 
  15      5.8      4.0      1.2       .2 setosa 
  16      5.7      4.4      1.5       .4 setosa 
  17      5.4      3.9      1.3       .4 setosa 
  18      5.1      3.5      1.4       .3 setosa 
  19      5.7      3.8      1.7       .3 setosa 
  20      5.1      3.8      1.5       .3 setosa 
  21      5.4      3.4      1.7       .2 setosa 
  22      5.1      3.7      1.5       .4 setosa 
  23      4.6      3.6      1.0       .2 setosa 
  24      5.1      3.3      1.7       .5 setosa 
  25      4.8      3.4      1.9       .2 setosa 
  26      5.0      3.0      1.6       .2 setosa 
  27      5.0      3.4      1.6       .4 setosa 
  28      5.2      3.5      1.5       .2 setosa 
  29      5.2      3.4      1.4       .2 setosa 
  30      4.7      3.2      1.6       .2 setosa 
  31      4.8      3.1      1.6       .2 setosa 
  32      5.4      3.4      1.5       .4 setosa 
  33      5.2      4.1      1.5       .1 setosa 
  34      5.5      4.2      1.4       .2 setosa 
  35      4.9      3.1      1.5       .2 setosa 
  36      5.0      3.2      1.2       .2 setosa 
  37      5.5      3.5      1.3       .2 setosa 
  38      4.9      3.6      1.4       .1 setosa 
  39      4.4      3.0      1.3       .2 setosa 
  40      5.1      3.4      1.5       .2 setosa 
  41      5.0      3.5      1.3       .3 setosa 
  42      4.5      2.3      1.3       .3 setosa 
  43      4.4      3.2      1.3       .2 setosa 
  44      5.0      3.5      1.6       .6 setosa 
  45      5.1      3.8      1.9       .4 setosa 
  46      4.8      3.0      1.4       .3 setosa 
  47      5.1      3.8      1.6       .2 setosa 
  48      4.6      3.2      1.4       .2 setosa 
  49      5.3      3.7      1.5       .2 setosa 
  50      5.0      3.3      1.4       .2 setosa 

Chúng tôi có 4 biến số để đưa vào các phân tích của chúng tôi: SLid SWidth PLimum PWidth , và các phân tích sẽ dựa trên hiệp phương sai , giống như chúng tôi phân tích các biến trung tâm . (Nếu chúng tôi chọn phân tích các mối tương quan sẽ phân tích các biến được tiêu chuẩn hóa. Phân tích dựa trên các mối tương quan tạo ra kết quả khác với phân tích dựa trên hiệp phương sai.) Tôi sẽ không hiển thị dữ liệu trung tâm. Hãy gọi những ma trận dữ liệu này X.

Các bước PCA :

Step 0. Compute centered variables X and covariance matrix S.

Covariances S (= X'*X/(n-1) matrix: see /stats//a/22520/3277)
.12424898   .09921633   .01635510   .01033061
.09921633   .14368980   .01169796   .00929796
.01635510   .01169796   .03015918   .00606939
.01033061   .00929796   .00606939   .01110612

Step 1.1. Decompose data X or matrix S to get eigenvalues and right eigenvectors.
          You may use svd or eigen decomposition (see /stats//q/79043/3277)

Eigenvalues L (component variances) and the proportion of overall variance explained
           L            Prop
PC1   .2364556901   .7647237023 
PC2   .0369187324   .1193992401 
PC3   .0267963986   .0866624997 
PC4   .0090332606   .0292145579    

Eigenvectors V (cosines of rotation of variables into components)
              PC1           PC2           PC3           PC4
SLength   .6690784044   .5978840102  -.4399627716  -.0360771206 
SWidth    .7341478283  -.6206734170   .2746074698  -.0195502716 
PLength   .0965438987   .4900555922   .8324494972  -.2399012853 
PWidth    .0635635941   .1309379098   .1950675055   .9699296890 

Step 1.2. Decide on the number M of first PCs you want to retain.
          You may decide it now or later on - no difference, because in PCA values of components do not depend on M.
          Let's M=2. So, leave only 2 first eigenvalues and 2 first eigenvector columns.

Step 2. Compute loadings A. May skip if you don't need to interpret PCs anyhow.
Loadings are eigenvectors normalized to respective eigenvalues: A value = V value * sqrt(L value)
Loadings are the covariances between variables and components.

Loadings A
              PC1           PC2           
SLength    .32535081     .11487892
SWidth     .35699193    -.11925773
PLength    .04694612     .09416050
PWidth     .03090888     .02515873

Sums of squares in columns of A are components' variances, the eigenvalues

Standardized (rescaled) loadings.
St. loading is Loading / sqrt(Variable's variance);
these loadings are computed if you analyse covariances, and are suitable for interpretation of PCs
(if you analyse correlations, A are already standardized).
              PC1           PC2      
SLength    .92300804     .32590717
SWidth     .94177127    -.31461076
PLength    .27032731     .54219930
PWidth     .29329327     .23873031

Step 3. Compute component scores (values of PCs).

Regression coefficients B to compute Standardized component scores are: B = A*diag(1/L) = inv(S)*A
B
              PC1           PC2  
SLength   1.375948338   3.111670112 
SWidth    1.509762499  -3.230276923 
PLength    .198540883   2.550480216 
PWidth     .130717448    .681462580 

Standardized component scores (having variances 1) = X*B
      PC1           PC2
  .219719506   -.129560000 
 -.810351411    .863244439 
 -.803442667   -.660192989 
-1.052305574   -.138236265 
  .233100923   -.763754703 
 1.322114762    .413266845 
 -.606159168  -1.294221106 
 -.048997489    .137348703 
  ...

Raw component scores (having variances = eigenvalues) can of course be computed from standardized ones.
In PCA, they are also computed directly as X*V
      PC1           PC2
  .106842367   -.024893980 
 -.394047228    .165865927 
 -.390687734   -.126851118 
 -.511701577   -.026561059 
  .113349309   -.146749722 
  .642900908    .079406116 
 -.294755259   -.248674852 
 -.023825867    .026390520 
  ...

Các bước FA (phương pháp trích xuất trục chính lặp):

Step 0.1. Compute centered variables X and covariance matrix S.

Step 0.2. Decide on the number of factors M to extract.
          (There exist several well-known methods in help to decide, let's omit mentioning them. Most of them require that you do PCA first.)
          Note that you have to select M before you proceed further because, unlike in PCA, in FA loadings and factor values depend on M.
          Let's M=2.

Step 0.3. Set initial communalities on the diagonal of S.
          Most often quantities called "images" are used as initial communalities (see /stats//a/43224/3277).
          Images are diagonal elements of matrix S-D, where D is diagonal matrix with diagonal = 1 / diagonal of inv(S).
          (If S is correlation matrix, images are the squared multiple correlation coefficients.)

With covariance matrix, image is the squared multiple correlation multiplied by the variable variance.
S with images as initial communalities on the diagonal
.07146025  .09921633  .01635510  .01033061
.09921633  .07946595  .01169796  .00929796
.01635510  .01169796  .00437017  .00606939
.01033061  .00929796  .00606939  .00167624

Step 1. Decompose that modified S to get eigenvalues and right eigenvectors.
        Use eigen decomposition, not svd. (Usually some last eigenvalues will be negative.)

Eigenvalues L
F1   .1782099114
F2   .0062074477
    -.0030958623
    -.0243488794

Eigenvectors V
               F1            F2 
SLength   .6875564132   .0145988554   .0466389510   .7244845480
SWidth    .7122191394   .1808121121  -.0560070806  -.6759542030
PLength   .1154657746  -.7640573143   .6203992617  -.1341224497
PWidth    .0817173855  -.6191205651  -.7808922917  -.0148062006

Leave the first M=2 values in L and columns in V.

Step 2.1. Compute loadings A.
Loadings are eigenvectors normalized to respective eigenvalues: A value = V value * sqrt(L value)
               F1            F2 
SLength   .2902513607   .0011502052
SWidth    .3006627098   .0142457085
PLength   .0487437795  -.0601980567
PWidth    .0344969255  -.0487788732

Step 2.2. Compute row sums of squared loadings. These are updated communalities.
          Reset the diagonal of S to them

S with updated communalities on the diagonal
.08424718  .09921633  .01635510  .01033061
.09921633  .09060101  .01169796  .00929796
.01635510  .01169796  .00599976  .00606939
.01033061  .00929796  .00606939  .00356942

REPEAT Steps 1-2 many times (iterations, say, 25)

Extraction of factors is done.

Final loadings A and communalities (row sums of squares in A).
Loadings are the covariances between variables and factors.
Communality is the degree to what the factors load a variable, it is the "common variance" in the variable.
               F1            F2                        Comm
SLength   .3125767362   .0128306509                .0978688416
SWidth    .3187577564  -.0323523347                .1026531808
PLength   .0476237419   .1034495601                .0129698323
PWidth    .0324478281   .0423861795                .0028494498

Sums of squares in columns of A are factors' variances.

Standardized (rescaled) loadings and communalities.
St. loading is Loading / sqrt(Variable's variance);
these loadings are computed if you analyse covariances, and are suitable for interpretation of Fs
(if you analyse correlations, A are already standardized).
               F1            F2                        Comm
SLength   .8867684574   .0364000747                .7876832626
SWidth    .8409066701  -.0853478652                .7144082859
PLength   .2742292179   .5956880078                .4300458666
PWidth    .3078962532   .4022009053                .2565656710

Step 3. Compute factor scores (values of Fs).
        Unlike component scores in PCA, factor scores are not exact, they are reasonable approximations.
        Several methods of computation exist (/stats//q/126885/3277).
        Here is regressional method which is the same as the one used in PCA.

Regression coefficients B to compute Standardized factor scores are: B = inv(S)*A (original S is used)
B
              F1           F2  
SLength  1.597852081   -.023604439
SWidth   1.070410719   -.637149341
PLength   .212220217   3.157497050
PWidth    .423222047   2.646300951

Standardized factor scores = X*B
These "Standardized factor scores" have variance not 1; the variance of a factor is SSregression of the factor by variables / (n-1).
      F1           F2
  .194641800   -.365588231
 -.660133976   -.042292672
 -.786844270   -.480751358
-1.011226507    .216823430
  .141897664   -.426942721
 1.250472186    .848980006
 -.669003108   -.025440982
 -.050962459    .016236852
  ...

Factors are extracted as orthogonal. And they are.
However, regressionally computed factor scores are not fully uncorrelated.
Covariance matrix between computed factor scores.
      F1      F2
F1   .864   .026
F2   .026   .459

Factor variances are their squared loadings.
You can easily recompute the above "standardized" factor scores to "raw" factor scores having those variances:
raw score = st. score * sqrt(factor variance / st. scores variance).

Sau khi trích xuất (hiển thị ở trên), xoay tùy chọn có thể diễn ra. Xoay thường được thực hiện trong FA. Đôi khi nó được thực hiện trong PCA chính xác theo cùng một cách. Xoay vòng xoay ma trận tải A thành một dạng "cấu trúc đơn giản" nào đó tạo điều kiện thuận lợi cho việc giải thích các yếu tố (sau đó có thể tính toán điểm quay). Vì xoay vòng không phải là điều khác biệt FA với PCA về mặt toán học và vì đây là một chủ đề lớn riêng biệt, tôi sẽ không chạm vào nó.


Khi bạn nói về "hình ảnh" là các cộng đồng ban đầu, bạn đưa ra một liên kết đến một câu trả lời khác của bạn (thảo luận về các phương pháp chọn cộng đồng ban đầu khác nhau), nhưng nó không đề cập đến "hình ảnh". Nghe có vẻ thú vị, bạn có thể muốn mở rộng câu trả lời cũ không?
amip nói phục hồi Monica

nhưng phân tích nhân tố có vẻ hơi lạ đối với tôi, bây giờ tôi đang suy nghĩ về nó và không thể đoán được
dato datuashvili
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.