Tôi đang sao chép từ đầu các kết quả trong Mục 4.2.1 của
Khả năng cận biên từ đầu ra Gibbs
Siddhartha Chib
Tạp chí của Hiệp hội Thống kê Hoa Kỳ, Tập. 90, số 432. (tháng 12 năm 1995), trang 1313-1321.
Đây là một hỗn hợp của mô hình chuẩn với số của các thành phần đã biết.
Bộ lấy mẫu Gibbs cho mô hình này được triển khai bằng kỹ thuật tăng dữ liệu của Tanner và Wong. Một tập hợp các biến phân bổ giả sử các giá trị được giới thiệu và chúng tôi chỉ định rằng và . Theo sau đó, việc tích hợp trên sẽ mang lại khả năng ban đầu .1 , ... , k Pr ( z i = j | w ) = w j f ( x i | z , μ , σ 2 ) = N ( x i | μ z i , σ 2 z i ) z i ( ∗ )
Bộ dữ liệu được hình thành bởi vận tốc của thiên hà từ chòm sao Corona Borealis.
set.seed(1701)
x <- c( 9.172, 9.350, 9.483, 9.558, 9.775, 10.227, 10.406, 16.084, 16.170, 18.419, 18.552, 18.600, 18.927,
19.052, 19.070, 19.330, 19.343, 19.349, 19.440, 19.473, 19.529, 19.541, 19.547, 19.663, 19.846, 19.856,
19.863, 19.914, 19.918, 19.973, 19.989, 20.166, 20.175, 20.179, 20.196, 20.215, 20.221, 20.415, 20.629,
20.795, 20.821, 20.846, 20.875, 20.986, 21.137, 21.492, 21.701, 21.814, 21.921, 21.960, 22.185, 22.209,
22.242, 22.249, 22.314, 22.374, 22.495, 22.746, 22.747, 22.888, 22.914, 23.206, 23.241, 23.263, 23.484,
23.538, 23.542, 23.666, 23.706, 23.711, 24.129, 24.285, 24.289, 24.366, 24.717, 24.990, 25.633, 26.960,
26.995, 32.065, 32.789, 34.279 )
nn <- length(x)
Chúng tôi giả sử rằng , và là độc lập với một tiên nghiệm với μ j σ 2 j ( w 1 , ... , w k ) ~ D i r ( một 1 , ... , một k )
k <- 3
mu0 <- 20
va0 <- 100
nu0 <- 6
de0 <- 40
a <- rep(1, k)
Sử dụng Định lý Bayes, các điều kiện đầy đủ là trong đó với
Mục tiêu là để tính toán một ước tính cho khả năng cận biên của mô hình. Phương pháp của Chib bắt đầu với lần chạy đầu tiên của bộ lấy mẫu Gibbs bằng cách sử dụng các điều kiện đầy đủ.
burn_in <- 1000
run <- 15000
cat("First Gibbs run (full):\n")
N <- burn_in + run
w <- matrix(1, nrow = N, ncol = k)
mu <- matrix(0, nrow = N, ncol = k)
va <- matrix(1, nrow = N, ncol = k)
z <- matrix(1, nrow = N, ncol = nn)
n <- integer(k)
m <- numeric(k)
de <- numeric(k)
rdirichlet <- function(a) { y <- rgamma(length(a), a, 1); y / sum(y) }
pb <- txtProgressBar(min = 2, max = N, style = 3)
z[1,] <- sample.int(k, size = nn, replace = TRUE)
for (t in 2:N) {
n <- tabulate(z[t-1,], nbins = k)
w[t,] <- rdirichlet(a + n)
m <- sapply(1:k, function(j) sum(x[z[t-1,]==j]))
m[n > 0] <- m[n > 0] / n[n > 0]
mu[t,] <- rnorm(k, mean = (n*m*va0+mu0*va[t-1,])/(n*va0+va[t-1,]), sd = sqrt(va0*va[t-1,]/(n*va0+va[t-1,])))
de <- sapply(1:k, function(j) sum((x[z[t-1,]==j] - mu[t,j])^2))
va[t,] <- 1 / rgamma(k, shape = (nu0+n)/2, rate = (de0+de)/2)
z[t,] <- sapply(1:nn, function(i) sample.int(k, size = 1, prob = exp(log(w[t,]) + dnorm(x[i], mean = mu[t,], sd = sqrt(va[t,]), log = TRUE))))
setTxtProgressBar(pb, t)
}
close(pb)
Từ lần chạy đầu tiên này, chúng tôi nhận được một điểm gần đúng về khả năng tối đa. Vì khả năng thực sự không bị ràng buộc, những gì thủ tục này có thể mang lại là một MAP địa phương gần đúng.
w <- w[(burn_in+1):N,]
mu <- mu[(burn_in+1):N,]
va <- va[(burn_in+1):N,]
z <- z[(burn_in+1):N,]
N <- N - burn_in
log_L <- function(x, w, mu, va) sum(log(sapply(1:nn, function(i) sum(exp(log(w) + dnorm(x[i], mean = mu, sd = sqrt(va), log = TRUE))))))
ts <- which.max(sapply(1:N, function(t) log_L(x, w[t,], mu[t,], va[t,])))
ws <- w[ts,]
mus <- mu[ts,]
vas <- va[ts,]
Ước tính log của Chib về khả năng cận biên là
Chúng tôi đã có hai điều khoản đầu tiên.
log_prior <- function(w, mu, va) {
lgamma(sum(a)) - sum(lgamma(a)) + sum((a-1)*log(w))
+ sum(dnorm(mu, mean = mu0, sd = sqrt(va0), log = TRUE))
+ sum((nu0/2)*log(de0/2) - lgamma(nu0/2) - (nu0/2+1)*log(va) - de0/(2*va))
}
chib <- log_L(x, ws, mus, vas) + log_prior(ws, mus, vas)
Ước tính Rao-Blackwellized của là và có sẵn từ lần chạy Gibbs đầu tiên.
pi.mu_va.z.x <- function(mu, va, z) {
n <- tabulate(z, nbins = k)
m <- sapply(1:k, function(j) sum(x[z==j]))
m[n > 0] <- m[n > 0] / n[n > 0]
exp(sum(dnorm(mu, mean = (n*m*va0+mu0*va)/(n*va0+va), sd = sqrt(va0*va/(n*va0+va)), log = TRUE)))
}
chib <- chib - log(mean(sapply(1:N, function(t) pi.mu_va.z.x(mus, va[t,], z[t,]))))
Ước tính Rao-Blackwellized của là và được tính từ lần chạy Gibbs giảm thứ hai trong đó không được cập nhật, nhưng được thực hiện bằng ở mỗi bước lặp.
cat("Second Gibbs run (reduced):\n")
N <- burn_in + run
w <- matrix(1, nrow = N, ncol = k)
va <- matrix(1, nrow = N, ncol = k)
z <- matrix(1, nrow = N, ncol = nn)
pb <- txtProgressBar(min = 2, max = N, style = 3)
z[1,] <- sample.int(k, size = nn, replace = TRUE)
for (t in 2:N) {
n <- tabulate(z[t-1,], nbins = k)
w[t,] <- rdirichlet(a + n)
de <- sapply(1:k, function(j) sum((x[z[t-1,]==j] - mus[j])^2))
va[t,] <- 1 / rgamma(k, shape = (nu0+n)/2, rate = (de0+de)/2)
z[t,] <- sapply(1:nn, function(i) sample.int(k, size = 1, prob = exp(log(w[t,]) + dnorm(x[i], mean = mus, sd = sqrt(va[t,]), log = TRUE))))
setTxtProgressBar(pb, t)
}
close(pb)
w <- w[(burn_in+1):N,]
va <- va[(burn_in+1):N,]
z <- z[(burn_in+1):N,]
N <- N - burn_in
pi.va_mu.z.x <- function(va, mu, z) {
n <- tabulate(z, nbins = k)
de <- sapply(1:k, function(j) sum((x[z==j] - mu[j])^2))
exp(sum(((nu0+n)/2)*log((de0+de)/2) - lgamma((nu0+n)/2) - ((nu0+n)/2+1)*log(va) - (de0+de)/(2*va)))
}
chib <- chib - log(mean(sapply(1:N, function(t) pi.va_mu.z.x(vas, mus, z[t,]))))
Theo cách tương tự, ước tính Rao-Blackwellized của là và được tính từ lần chạy Gibbs giảm thứ ba trong đó và không được cập nhật, nhưng được thực hiện bằng và tương ứng ở mỗi bước lặp.
cat("Third Gibbs run (reduced):\n")
N <- burn_in + run
w <- matrix(1, nrow = N, ncol = k)
z <- matrix(1, nrow = N, ncol = nn)
pb <- txtProgressBar(min = 2, max = N, style = 3)
z[1,] <- sample.int(k, size = nn, replace = TRUE)
for (t in 2:N) {
n <- tabulate(z[t-1,], nbins = k)
w[t,] <- rdirichlet(a + n)
z[t,] <- sapply(1:nn, function(i) sample.int(k, size = 1, prob = exp(log(w[t,]) + dnorm(x[i], mean = mus, sd = sqrt(vas), log = TRUE))))
setTxtProgressBar(pb, t)
}
close(pb)
w <- w[(burn_in+1):N,]
z <- z[(burn_in+1):N,]
N <- N - burn_in
pi.w_z.x <- function(w, z) {
n <- tabulate(z, nbins = k)
exp(lgamma(sum(a+n)) - sum(lgamma(a+n)) + sum((a+n-1)*log(w)))
}
chib <- chib - log(mean(sapply(1:N, function(t) pi.w_z.x(ws, z[t,]))))
Sau khi tất cả điều này, chúng ta có được một đăng nhập ước tính đó là lớn hơn so với cái báo cáo của Chib: với Monte Carlo lỗi .
Để kiểm tra xem bằng cách nào đó tôi đã làm rối tung các bộ lấy mẫu Gibbs, tôi đã thực hiện lại toàn bộ bằng cách sử dụng RJAGS. Các mã sau đây cho kết quả tương tự.
x <- c( 9.172, 9.350, 9.483, 9.558, 9.775, 10.227, 10.406, 16.084, 16.170, 18.419, 18.552, 18.600, 18.927, 19.052, 19.070, 19.330,
19.343, 19.349, 19.440, 19.473, 19.529, 19.541, 19.547, 19.663, 19.846, 19.856, 19.863, 19.914, 19.918, 19.973, 19.989, 20.166,
20.175, 20.179, 20.196, 20.215, 20.221, 20.415, 20.629, 20.795, 20.821, 20.846, 20.875, 20.986, 21.137, 21.492, 21.701, 21.814,
21.921, 21.960, 22.185, 22.209, 22.242, 22.249, 22.314, 22.374, 22.495, 22.746, 22.747, 22.888, 22.914, 23.206, 23.241, 23.263,
23.484, 23.538, 23.542, 23.666, 23.706, 23.711, 24.129, 24.285, 24.289, 24.366, 24.717, 24.990, 25.633, 26.960, 26.995, 32.065,
32.789, 34.279 )
library(rjags)
nn <- length(x)
k <- 3
mu0 <- 20
va0 <- 100
nu0 <- 6
de0 <- 40
a <- rep(1, k)
burn_in <- 10^3
N <- 10^4
full <- "
model {
for (i in 1:n) {
x[i] ~ dnorm(mu[z[i]], tau[z[i]])
z[i] ~ dcat(w[])
}
for (i in 1:k) {
mu[i] ~ dnorm(mu0, 1/va0)
tau[i] ~ dgamma(nu0/2, de0/2)
va[i] <- 1/tau[i]
}
w ~ ddirich(a)
}
"
data <- list(x = x, n = nn, k = k, mu0 = mu0, va0 = va0, nu0 = nu0, de0 = de0, a = a)
model <- jags.model(textConnection(full), data = data, n.chains = 1, n.adapt = 100)
update(model, n.iter = burn_in)
samples <- jags.samples(model, c("mu", "va", "w", "z"), n.iter = N)
mu <- matrix(samples$mu, nrow = N, byrow = TRUE)
va <- matrix(samples$va, nrow = N, byrow = TRUE)
w <- matrix(samples$w, nrow = N, byrow = TRUE)
z <- matrix(samples$z, nrow = N, byrow = TRUE)
log_L <- function(x, w, mu, va) sum(log(sapply(1:nn, function(i) sum(exp(log(w) + dnorm(x[i], mean = mu, sd = sqrt(va), log = TRUE))))))
ts <- which.max(sapply(1:N, function(t) log_L(x, w[t,], mu[t,], va[t,])))
ws <- w[ts,]
mus <- mu[ts,]
vas <- va[ts,]
log_prior <- function(w, mu, va) {
lgamma(sum(a)) - sum(lgamma(a)) + sum((a-1)*log(w))
+ sum(dnorm(mu, mean = mu0, sd = sqrt(va0), log = TRUE))
+ sum((nu0/2)*log(de0/2) - lgamma(nu0/2) - (nu0/2+1)*log(va) - de0/(2*va))
}
chib <- log_L(x, ws, mus, vas) + log_prior(ws, mus, vas)
cat("log-likelihood + log-prior =", chib, "\n")
pi.mu_va.z.x <- function(mu, va, z, x) {
n <- sapply(1:k, function(j) sum(z==j))
m <- sapply(1:k, function(j) sum(x[z==j]))
m[n > 0] <- m[n > 0] / n[n > 0]
exp(sum(dnorm(mu, mean = (n*m*va0+mu0*va)/(n*va0+va), sd = sqrt(va0*va/(n*va0+va)), log = TRUE)))
}
chib <- chib - log(mean(sapply(1:N, function(t) pi.mu_va.z.x(mus, va[t,], z[t,], x))))
cat("log-likelihood + log-prior - log-pi.mu_ =", chib, "\n")
fixed.mu <- "
model {
for (i in 1:n) {
x[i] ~ dnorm(mus[z[i]], tau[z[i]])
z[i] ~ dcat(w[])
}
for (i in 1:k) {
tau[i] ~ dgamma(nu0/2, de0/2)
va[i] <- 1/tau[i]
}
w ~ ddirich(a)
}
"
data <- list(x = x, n = nn, k = k, nu0 = nu0, de0 = de0, a = a, mus = mus)
model <- jags.model(textConnection(fixed.mu), data = data, n.chains = 1, n.adapt = 100)
update(model, n.iter = burn_in)
samples <- jags.samples(model, c("va", "w", "z"), n.iter = N)
va <- matrix(samples$va, nrow = N, byrow = TRUE)
w <- matrix(samples$w, nrow = N, byrow = TRUE)
z <- matrix(samples$z, nrow = N, byrow = TRUE)
pi.va_mu.z.x <- function(va, mu, z, x) {
n <- sapply(1:k, function(j) sum(z==j))
de <- sapply(1:k, function(j) sum((x[z==j] - mu[j])^2))
exp(sum(((nu0+n)/2)*log((de0+de)/2) - lgamma((nu0+n)/2) - ((nu0+n)/2+1)*log(va) - (de0+de)/(2*va)))
}
chib <- chib - log(mean(sapply(1:N, function(t) pi.va_mu.z.x(vas, mus, z[t,], x))))
cat("log-likelihood + log-prior - log-pi.mu_ - log-pi.va_ =", chib, "\n")
fixed.mu.and.va <- "
model {
for (i in 1:n) {
x[i] ~ dnorm(mus[z[i]], 1/vas[z[i]])
z[i] ~ dcat(w[])
}
w ~ ddirich(a)
}
"
data <- list(x = x, n = nn, a = a, mus = mus, vas = vas)
model <- jags.model(textConnection(fixed.mu.and.va), data = data, n.chains = 1, n.adapt = 100)
update(model, n.iter = burn_in)
samples <- jags.samples(model, c("w", "z"), n.iter = N)
w <- matrix(samples$w, nrow = N, byrow = TRUE)
z <- matrix(samples$z, nrow = N, byrow = TRUE)
pi.w_z.x <- function(w, z, x) {
n <- sapply(1:k, function(j) sum(z==j))
exp(lgamma(sum(a)+nn) - sum(lgamma(a+n)) + sum((a+n-1)*log(w)))
}
chib <- chib - log(mean(sapply(1:N, function(t) pi.w_z.x(ws, z[t,], x))))
cat("log-likelihood + log-prior - log-pi.mu_ - log-pi.va_ - log-pi.w_ =", chib, "\n")
Câu hỏi của tôi là nếu trong phần mô tả ở trên có bất kỳ sự hiểu lầm nào về phương pháp của Chib hoặc bất kỳ sai lầm nào trong quá trình thực hiện.