Tôi có thể nhận trợ giúp để hoàn thành nỗ lực dự kiến (đang thực hiện) này để có được vòng bi của mình trên các tương đương của ANOVA và ĐĂNG KÝ không? Tôi đã cố gắng dung hòa các khái niệm, danh pháp và cú pháp của hai phương pháp này. Có rất nhiều bài đăng trên trang web này về tính phổ biến của chúng, ví dụ như cái này hay cái này , nhưng vẫn tốt để có một bản đồ "bạn đang ở đây" nhanh chóng khi bắt đầu.
Tôi có kế hoạch cập nhật bài viết này, và hy vọng sẽ được giúp đỡ sửa chữa sai lầm.
ANOVA một chiều:
Structure: DV is continuous; IV is ONE FACTOR with different LEVELS.
Scenario: miles-per-gal. vs cylinders
Note that Income vs Gender (M, F) is a t-test.
Syntax: fit <- aov(mpg ~ as.factor(cyl), data = mtcars); summary(fit); TukeyHSD(fit)
Regression: fit <- lm(mpg ~ as.factor(cyl), mtcars)
# with F dummy coded;
summary(fit); anova(fit)
ANOVA hai chiều:
Structure: DV is continuous; IV is > 1 FACTORS with different LEVELS.
Scenario: mpg ~ cylinders & carburators
Syntax: fit <- aov(mpg ~ as.factor(cyl) + as.factor(carb), mtcars);
summary(fit); TukeyHSD(fit)
Regression: fit <- lm(mpg ~ as.factor(cyl) + as.factor(carb), mtcars)
# with F dummy coded;
summary(fit); anova(fit)
Nhân tố hai chiều ANOVA:
Structure: All possible COMBINATIONS of LEVELS are considered.
Scenario: mpg ~ cylinders + carburetors + (4cyl/1,...8cyl/4)
Syntax: fit <- aov(mpg ~ as.factor(cyl) * as.factor(carb), mtcars);
summary(fit); TukeyHSD(fit)
Regression: fit <- lm(mpg ~ as.factor(cyl) * as.factor(carb), mtcars)
# with F dummy coded;
summary(fit); anova(fit)
ANCOVA:
Structure: DV continuous ~ Factor and continuous COVARIATE.
Scenario: mpg ~ cylinders + weight
Syntax: fit <- aov(mpg ~ as.factor(cyl) + wt, mtcars); summary(fit)
Regression: fit <- lm(mpg ~ as.factor(cyl) + wt, mtcars)
# with F dummy coded;
summary(fit); anova(fit)
MANOVA:
Structure: > 1 DVs continuous ~ 1 FACTOR ("One-way") or 2 FACTORS ("Two-way MANOVA").
Scenario: mpg and wt ~ cylinders
Syntax: fit <- manova(cbind(mpg,wt) ~ as.factor(cyl), mtcars); summary(fit)
Regression: N/A
MANCOVA:
Structure: > 1 DVs continuous ~ 1 FACTOR + 1 continuous (covariate) DV.
Scenario: mpg and wt ~ cyl + displacement (cubic inches)
Syntax: fit <- manova(cbind(mpg,wt) ~ as.factor(cyl) + disp, mtcars); summary(fit)
Regression: N/A
ININ FACTOR (hoặc CHỦ ĐỀ) ANOVA: ( mã ở đây )
Structure: DV continuous ~ FACTOR with each level * with subject (repeated observations).
Extension paired t-test. Each subject measured at each level multiple times.
Scenario: Memory rate ~ Emotional value of words for Subjects @ Times
Syntax: fit <- aov(Recall_Rate ~ Emtl_Value * Time + Error(Subject/Time), data);
summary(fit); print(model.tables(fit, "means"), digits=3);
boxplot(Recall_Rate ~ Emtl_Value, data=data)
with(data, interaction.plot(Time, Emtl_Value, Recall_Rate))
with(data, interaction.plot(Subject, Emtl_Value, Recall_Rate))
NOTE: Data should be in the LONG FORMAT (same subject in multiple rows)
Regression: Mixed Effects
require(lme4); require(lmerTest)
fit <- lmer(Recall_Rate ~ Emtl_Value * Time + (1|Subject/Time), data);
anova(fit); summary(fit); coefficients(fit); confint(fit)
or
require(nlme)
fit <- lme(Recall_Rate ~ Emtl_Value * Time, random = ~1|Subject/Time, data)
summary(fit); anova(fit); coefficients(fit); confint(fit)
SPLIT-PLOT: ( mã ở đây )
Structure: DV continuous ~ FACTOR/-S with RANDOM EFFECTS and pseudoreplication.
Scenario: Harvest yield ~ Factors = Irrigation / Density of seeds / Fertilizer
& RANDOM EFFECTS (Blocks and plots of land):
Syntax: fit <- aov(yield ~ irrigation * density * fertilizer +
Error(block/irrigation/density), data); summary(fit)
Regression: Mixed Effects
require(lme4); require(lmerTest);
fit <- lmer(yield ~ irrigation * fertilizer +
(1|block/irrigation/density), data = splityield);
anova(fit); summary(fit); coefficients(fit); confint(fit)
or
library(nlme)
fit <- lme(yield ~ irrigation * variety, random=~1|field, irrigation)
summary(fit); anova(fit)
THIẾT KẾ NESTED: ( mã ở đây )
Structure: DV continuous ~ FACTOR/-S with pseudoreplication.
Scenario: [Glycogen] ~ Factors = Treatment & RANDOM EFFECTS with Russian-doll effect:
Six rats (6 Livers)-> 3 Microscopic Slides/Liver-> 2 Readings/Slide).
Syntax: fit <- aov(Glycogen ~ Treatment + Error(Rat/Liver), data); summary(fit)
Regression: Mixed Effects
require(lme4); require(lmerTest)
fit <- lmer(Glycogen ~ Treatment + (1|Rat/Liver), rats);
anova(fit); summary(fit); coefficients(fit); confint(fit)
or
require(nlme)
fit<-lme(Glycogen ~ Treatment, random=~1|Rat/Liver, rats)
summary(fit); anova(fit); VarCorr(fit)
TRANG WEB HỮU ÍCH:
cyl + hp
. Horespower là liên tục, vì vậy không làm việc ở đây.carb
, số lượng bộ chế hòa khí sẽ là một lựa chọn tốt hơn.