Trong khi giúp người khác phân tích, tôi đã gặp phải một câu hỏi liên quan đến sự khác biệt giữa kiểm tra t và kiểm tra F đối với các mô hình hỗn hợp tuyến tính trong lme4 cho R, như được cung cấp bởi lmerTest. Tôi nhận thức được các vấn đề khi tính toán bất kỳ loại giá trị p nào cho các mô hình hỗn hợp tuyến tính (theo tôi hiểu, chủ yếu là do thực tế là định nghĩa về mức độ tự do là có vấn đề), cũng như các vấn đề về diễn giải các tác động chính trong sự hiện diện của các tương tác quan trọng (dựa trên nguyên tắc cận biên).
Tóm lại, dữ liệu là từ một thử nghiệm với hai điều kiện (đồng dạng TRUE / FALSE), được đo trên sáu bộ cảm biến có thể được mô tả là sự kết hợp của hai yếu tố: trước (sau / trước) và sau (trái / trung tâm / phải) .
Như có thể thấy từ đầu ra tóm tắt bên dưới, t.tests không cho thấy hiệu ứng đồng dư đáng kể (p = 0,12), trong khi đầu ra anova cho thấy hiệu ứng đồng dư rất đáng kể (p = 2,8e-10). Vì đồng đẳng chỉ có hai cấp độ, đây không thể là kết quả của thử nghiệm F thực hiện thử nghiệm omnibus qua một số cấp độ của yếu tố cố định. Do đó, tôi không chắc chắn điều gì gây ra kết quả rất quan trọng trong đầu ra anova. Đây có phải là do thực tế là có những tương tác mạnh mẽ liên quan đến sự phù hợp, tất nhiên phụ thuộc vào sự bao gồm của hiệu ứng chính trong tham số mô hình?
Tôi đã tìm kiếm một câu trả lời trước cho câu hỏi này trên CrossValidated nhưng tôi không thể tìm thấy bất cứ điều gì có liên quan ngoại trừ có thể là câu trả lời đầu tiên cho câu hỏi này . Tuy nhiên, nếu điều đó cung cấp một câu trả lời thực sự thì nó tiềm ẩn trong toán học, và tôi đang tìm kiếm một câu trả lời khái niệm mà tôi có thể giải thích cho người mà tôi đang cố gắng giúp đỡ.
> final.mod<-lmer(uV~1+factor(congruity)*factor(laterality)*factor(anteriority)+(1|sent.id)+(1|Subject),data=selected.data)
> summary(final.mod)
Linear mixed model fit by REML
t-tests use Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: uV ~ 1 + factor(congruity) * factor(laterality) * factor(anteriority) + (1 | sent.id) + (1 | Subject)
Data: selected.data
REML criterion at convergence: 348903.5
Scaled residuals:
Min 1Q Median 3Q Max
-7.0440 -0.6002 0.0069 0.6038 11.3912
Random effects:
Groups Name Variance Std.Dev.
sent.id (Intercept) 1.773 1.332
Subject (Intercept) 2.548 1.596
Residual 111.396 10.554
Number of obs: 46176, groups: sent.id, 41; Subject, 30
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 4.768e-03 3.973e-01 7.900e+01 0.012 0.9905
factor(congruity)TRUE 3.758e-01 2.410e-01 4.611e+04 1.559 0.1189
factor(laterality)left 7.154e-02 2.430e-01 4.610e+04 0.294 0.7685
factor(laterality)right -2.003e-01 2.430e-01 4.610e+04 -0.824 0.4098
factor(anteriority)posterior -4.203e-02 2.430e-01 4.610e+04 -0.173 0.8627
factor(congruity)TRUE:factor(laterality)left -1.013e-01 3.404e-01 4.610e+04 -0.298 0.7660
factor(congruity)TRUE:factor(laterality)right 7.233e-02 3.404e-01 4.610e+04 0.213 0.8317
factor(congruity)TRUE:factor(anteriority)posterior 6.162e-01 3.404e-01 4.610e+04 1.810 0.0702 .
factor(laterality)left:factor(anteriority)posterior 2.568e-01 3.437e-01 4.610e+04 0.747 0.4549
factor(laterality)right:factor(anteriority)posterior 1.763e-01 3.437e-01 4.610e+04 0.513 0.6080
factor(congruity)TRUE:factor(laterality)left:factor(anteriority)posterior -5.162e-02 4.813e-01 4.610e+04 -0.107 0.9146
factor(congruity)TRUE:factor(laterality)right:factor(anteriority)posterior -2.420e-01 4.813e-01 4.610e+04 -0.503 0.6152
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) fc()TRUE fctr(ltrlty)l fctr(ltrlty)r fctr(n) fctr(cngrty)TRUE:fctr(ltrlty)l fctr(cngrty)TRUE:fctr(ltrlty)r
fctr(c)TRUE -0.310
fctr(ltrlty)l -0.306 0.504
fctr(ltrlty)r -0.306 0.504 0.500
fctr(ntrrt) -0.306 0.504 0.500 0.500
fctr(cngrty)TRUE:fctr(ltrlty)l 0.218 -0.706 -0.714 -0.357 -0.357
fctr(cngrty)TRUE:fctr(ltrlty)r 0.218 -0.706 -0.357 -0.714 -0.357 0.500
fctr(cngrty)TRUE:fctr(n) 0.218 -0.706 -0.357 -0.357 -0.714 0.500 0.500
fctr(ltrlty)l:() 0.216 -0.357 -0.707 -0.354 -0.707 0.505 0.252
fctr(ltrlty)r:() 0.216 -0.357 -0.354 -0.707 -0.707 0.252 0.505
fctr(cngrty)TRUE:fctr(ltrlty)l:() -0.154 0.499 0.505 0.252 0.505 -0.707 -0.354
fctr(cngrty)TRUE:fctr(ltrlty)r:() -0.154 0.499 0.252 0.505 0.505 -0.354 -0.707
fctr(cngrty)TRUE:fctr(n) fctr(ltrlty)l:() fctr(ltrlty)r:() fctr(cngrty)TRUE:fctr(ltrlty)l:()
fctr(c)TRUE
fctr(ltrlty)l
fctr(ltrlty)r
fctr(ntrrt)
fctr(cngrty)TRUE:fctr(ltrlty)l
fctr(cngrty)TRUE:fctr(ltrlty)r
fctr(cngrty)TRUE:fctr(n)
fctr(ltrlty)l:() 0.505
fctr(ltrlty)r:() 0.505 0.500
fctr(cngrty)TRUE:fctr(ltrlty)l:() -0.707 -0.714 -0.357
fctr(cngrty)TRUE:fctr(ltrlty)r:() -0.707 -0.357 -0.714 0.500
> anova(final.mod)
Analysis of Variance Table of type III with Satterthwaite
approximation for degrees of freedom
Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
factor(congruity) 4439.1 4439.1 1 46142 39.850 2.768e-10 ***
factor(laterality) 572.9 286.5 2 46095 2.572 0.076430 .
factor(anteriority) 1508.1 1508.1 1 46095 13.538 0.000234 ***
factor(congruity):factor(laterality) 31.6 15.8 2 46095 0.142 0.867581
factor(congruity):factor(anteriority) 775.1 775.1 1 46095 6.958 0.008349 **
factor(laterality):factor(anteriority) 111.9 56.0 2 46095 0.502 0.605126
factor(congruity):factor(laterality):factor(anteriority) 31.2 15.6 2 46095 0.140 0.869183
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Trả lời câu hỏi của @ Aurelie:
> congruity.mod<-lmer(uV~1+factor(congruity)+(1|sent.id)+(1|Subject),data=selected.data)
> summary(congruity.mod)
Linear mixed model fit by REML
t-tests use Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: uV ~ 1 + factor(congruity) + (1 | sent.id) + (1 | Subject)
Data: selected.data
REML criterion at convergence: 494077.2
Scaled residuals:
Min 1Q Median 3Q Max
-10.1673 -0.5790 -0.0097 0.5818 12.6088
Random effects:
Groups Name Variance Std.Dev.
sent.id (Intercept) 4.568 2.137
Subject (Intercept) 6.132 2.476
Residual 178.137 13.347
Number of obs: 61568, groups: sent.id, 41; Subject, 30
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 0.6055 0.5671 57.0000 1.068 0.29
factor(congruity)FALSE -0.7105 0.1084 61535.0000 -6.558 5.51e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr)
fctr()FALSE -0.093
> anova(congruity.mod)
Analysis of Variance Table of type III with Satterthwaite
approximation for degrees of freedom
Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
factor(congruity) 7660.5 7660.5 1 61535 43.004 5.507e-11 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> laterality.mod<-lmer(uV~1+factor(laterality)+(1|sent.id)+(1|Subject),data=selected.data)
> summary(laterality.mod)
Linear mixed model fit by REML
t-tests use Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: uV ~ 1 + factor(laterality) + (1 | sent.id) + (1 | Subject)
Data: selected.data
REML criterion at convergence: 372848.2
Scaled residuals:
Min 1Q Median 3Q Max
-9.7033 -0.5981 -0.0076 0.6006 12.2265
Random effects:
Groups Name Variance Std.Dev.
sent.id (Intercept) 5.568 2.360
Subject (Intercept) 6.777 2.603
Residual 186.966 13.674
Number of obs: 46176, groups: sent.id, 41; Subject, 30
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 0.8128 0.6115 61.0000 1.329 0.18877
factor(laterality)left -0.4260 0.1559 46105.0000 -2.733 0.00628 **
factor(laterality)right -0.6709 0.1559 46105.0000 -4.304 1.68e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) fctr(ltrlty)l
fctr(ltrlty)l -0.127
fctr(ltrlty)r -0.127 0.500
> anova(laterality.mod)
Analysis of Variance Table of type III with Satterthwaite
approximation for degrees of freedom
Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
factor(laterality) 3548.2 1774.1 2 46105 9.4889 7.584e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> anteriority.mod<-lmer(uV~1+factor(anteriority)+(1|sent.id)+(1|Subject),data=selected.data)
> summary(anteriority.mod)
Linear mixed model fit by REML
t-tests use Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: uV ~ 1 + factor(anteriority) + (1 | sent.id) + (1 | Subject)
Data: selected.data
REML criterion at convergence: 372738.6
Scaled residuals:
Min 1Q Median 3Q Max
-9.6668 -0.5986 -0.0032 0.6017 12.2711
Random effects:
Groups Name Variance Std.Dev.
sent.id (Intercept) 5.569 2.360
Subject (Intercept) 6.777 2.603
Residual 186.525 13.657
Number of obs: 46176, groups: sent.id, 41; Subject, 30
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) -0.2693 0.6081 59.0000 -0.443 0.66
factor(anteriority)posterior 1.4328 0.1271 46105.0000 11.272 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr)
fctr(ntrrt) -0.105
> anova(anteriority.mod)
Analysis of Variance Table of type III with Satterthwaite
approximation for degrees of freedom
Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
factor(anteriority) 23700 23700 1 46106 127.06 < 2.2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Cập nhật: Sau khi cập nhật độ tương phản dựa trên câu trả lời của @ Henrik:
> options(contrasts=c("contr.sum","contr.poly"))
> final.mod<-lmer(uV~1+factor(congruity)*factor(laterality)*factor(anteriority)+(1|sent.id)+(1|Subject),data=selected.data)
> summary(final.mod)
Linear mixed model fit by REML
t-tests use Satterthwaite approximations to degrees of freedom ['lmerMod']
Formula: uV ~ 1 + factor(congruity) * factor(laterality) * factor(anteriority) + (1 | sent.id) + (1 | Subject)
Data: selected.data
REML criterion at convergence: 372689.8
Scaled residuals:
Min 1Q Median 3Q Max
-9.6772 -0.5979 -0.0016 0.5977 12.3439
Random effects:
Groups Name Variance Std.Dev.
sent.id (Intercept) 5.556 2.357
Subject (Intercept) 6.752 2.599
Residual 186.232 13.647
Number of obs: 46176, groups: sent.id, 41; Subject, 30
Fixed effects:
Estimate Std. Error df t value Pr(>|t|)
(Intercept) 4.355e-01 6.039e-01 5.800e+01 0.721 0.4737
factor(congruity)1 4.501e-01 6.396e-02 4.613e+04 7.037 1.99e-12 ***
factor(laterality)1 3.628e-01 8.983e-02 4.610e+04 4.039 5.38e-05 ***
factor(laterality)2 -5.732e-02 8.983e-02 4.610e+04 -0.638 0.5234
factor(anteriority)1 -7.183e-01 6.352e-02 4.610e+04 -11.308 < 2e-16 ***
factor(congruity)1:factor(laterality)1 1.433e-01 8.983e-02 4.610e+04 1.596 0.1106
factor(congruity)1:factor(laterality)2 -1.535e-01 8.983e-02 4.610e+04 -1.709 0.0875 .
factor(congruity)1:factor(anteriority)1 9.442e-02 6.352e-02 4.610e+04 1.487 0.1371
factor(laterality)1:factor(anteriority)1 2.282e-01 8.983e-02 4.610e+04 2.540 0.0111 *
factor(laterality)2:factor(anteriority)1 -2.121e-01 8.983e-02 4.610e+04 -2.362 0.0182 *
factor(congruity)1:factor(laterality)1:factor(anteriority)1 -7.802e-03 8.983e-02 4.610e+04 -0.087 0.9308
factor(congruity)1:factor(laterality)2:factor(anteriority)1 -1.141e-02 8.983e-02 4.610e+04 -0.127 0.8989
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Correlation of Fixed Effects:
(Intr) fctr(c)1 fctr(l)1 fct()2 fctr(n)1 fctr(cngrty)1:fctr(l)1 fc()1:()2 fctr(cngrty)1:fctr(n)1
fctr(cngr)1 -0.003
fctr(ltrl)1 0.000 0.000
fctr(ltrl)2 0.000 0.000 -0.500
fctr(ntrr)1 0.000 0.000 0.000 0.000
fctr(cngrty)1:fctr(l)1 0.000 0.000 -0.020 0.010 0.000
fctr()1:()2 0.000 0.000 0.010 -0.020 0.000 -0.500
fctr(cngrty)1:fctr(n)1 0.000 0.000 0.000 0.000 -0.020 0.000 0.000
fctr(l)1:()1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fctr()2:()1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
f()1:()1:() 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
f()1:()2:() 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
fctr(l)1:()1 f()2:( f()1:()1:
fctr(cngr)1
fctr(ltrl)1
fctr(ltrl)2
fctr(ntrr)1
fctr(cngrty)1:fctr(l)1
fctr()1:()2
fctr(cngrty)1:fctr(n)1
fctr(l)1:()1
fctr()2:()1 -0.500
f()1:()1:() -0.020 0.010
f()1:()2:() 0.010 -0.020 -0.500
> anova(final.mod)
Analysis of Variance Table of type III with Satterthwaite
approximation for degrees of freedom
Sum Sq Mean Sq NumDF DenDF F.value Pr(>F)
factor(congruity) 9221.9 9221.9 1 46129 49.518 1.993e-12 ***
factor(laterality) 3511.5 1755.7 2 46095 9.428 8.062e-05 ***
factor(anteriority) 23814.0 23814.0 1 46095 127.873 < 2.2e-16 ***
factor(congruity):factor(laterality) 680.3 340.1 2 46095 1.826 0.16101
factor(congruity):factor(anteriority) 411.5 411.5 1 46095 2.210 0.13714
factor(laterality):factor(anteriority) 1497.4 748.7 2 46095 4.020 0.01796 *
factor(congruity):factor(laterality):factor(anteriority) 8.6 4.3 2 46095 0.023 0.97713
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
anova()
và summary()
từ lmerMod
?