Mô hình chung với các điều khoản tương tác so với hồi quy riêng để so sánh nhóm


13

Sau khi thu thập thông tin phản hồi có giá trị từ các câu hỏi và thảo luận trước đó, tôi đã đưa ra câu hỏi sau: Giả sử mục tiêu là phát hiện sự khác biệt về hiệu ứng giữa hai nhóm, ví dụ nam và nữ. Có hai cách để làm điều đó:

  1. chạy hai hồi quy riêng cho hai nhóm và sử dụng thử nghiệm Wald để từ chối (hoặc không) giả thuyết null : , trong đó là hệ số của một IV trong hồi quy nam và là hệ số tương tự IV trong hồi quy nữ.b 1 - b 2 = 0 b 1 b 2H0b1b2=0b1b2

  2. gộp hai nhóm lại với nhau và chạy một mô hình chung bằng cách bao gồm một hình nộm giới tính và một thuật ngữ tương tác (IV * giới tính). Sau đó, việc phát hiện hiệu ứng nhóm sẽ dựa trên dấu hiệu tương tác và kiểm tra t có ý nghĩa.

Điều gì xảy ra nếu Ho bị từ chối trong trường hợp (1), tức là sự khác biệt nhóm là đáng kể, nhưng hệ số của thuật ngữ tương tác trong trường hợp (2) là không đáng kể về mặt thống kê, tức là sự khác biệt nhóm là không đáng kể. Hoặc ngược lại, Ho không bị từ chối trong trường hợp (1) và thuật ngữ tương tác có ý nghĩa trong trường hợp (2). Tôi đã kết thúc với kết quả này nhiều lần, và tôi đã tự hỏi kết quả nào sẽ đáng tin cậy hơn, và lý do đằng sau mâu thuẫn này là gì.

Cảm ơn nhiều!


1
sự khác biệt giữa các thủ tục là một giả định phương sai giống nhau cho cả hai nhóm. Các phân tích riêng biệt giả định phương sai khác nhau.
xác suất

Cảm ơn rất nhiều! Bạn có biết xin vui lòng tham khảo bất kỳ thảo luận nào về vấn đề phương sai khi so sánh các mô hình khác nhau không?
Bill718

Câu trả lời:


7

Mô hình đầu tiên sẽ tương tác hoàn toàn giới tính với tất cả các đồng biến khác trong mô hình. Về cơ bản, tác dụng của từng hiệp phương sai (b2, b3 ... bn). Trong mô hình thứ hai, ảnh hưởng của giới chỉ được tương tác với IV của bạn. Vì vậy, giả sử bạn có nhiều đồng biến hơn chỉ IV và giới tính, điều này có thể dẫn đến kết quả hơi khác nhau.

Nếu bạn chỉ có hai hiệp phương sai, có những trường hợp được ghi lại trong đó sự khác biệt về tối đa hóa giữa kiểm tra Wald và kiểm tra tỷ lệ khả năng dẫn đến các câu trả lời khác nhau (xem thêm trên wikipedia ).

Theo kinh nghiệm của riêng tôi, tôi cố gắng được hướng dẫn bởi lý thuyết. Nếu có một lý thuyết chi phối cho thấy giới tính sẽ chỉ tương tác với IV, nhưng không phải là các đồng biến khác, tôi sẽ đi với tương tác một phần.


Cảm ơn! Vâng, thực sự có nhiều đồng biến khác nhau, không chỉ một IV, tôi chỉ đề cập đến một IV trong câu hỏi cho đơn giản. Vấn đề là không có một lý thuyết mạnh mẽ nào có thể hỗ trợ sự tương tác giữa giới và một số đồng biến nhất định, đó là phân tích thăm dò, vì vậy tôi cần thử nghiệm nhiều tương tác và mô hình phù hợp; mô hình ban đầu chứa 30 dự đoán ...
Bill718

@ Bill718 Ngoài ra, các mô hình riêng biệt sẽ có một giao thoa khác, trong khi mô hình đơn lẻ sẽ không, trừ khi bạn chỉ định giới tính là một IV bổ sung (không chỉ là tương tác).
Robert Kubrick

5

Bất cứ lúc nào hai thủ tục khác nhau được sử dụng để kiểm tra một giả thuyết cụ thể sẽ có các giá trị p khác nhau. Có thể nói một điều có ý nghĩa và người kia không thể chỉ đưa ra quyết định trắng đen ở mức 0,05. Nếu một thử nghiệm cho giá trị p là 0,03 và thử nghiệm khác cho biết 0,07 tôi sẽ không gọi kết quả là mâu thuẫn. Nếu bạn sẽ nghiêm khắc trong việc suy nghĩ về tầm quan trọng thì rất dễ xảy ra tình huống (i) hoặc (ii) khi ý nghĩa của hội đồng quản trị là trường hợp.

Như tôi đã đề cập để trả lời cho câu hỏi trước, sở thích của tôi khi tìm kiếm một tương tác là thực hiện một hồi quy kết hợp.


Vâng, đúng là hồi quy kết hợp dường như hoạt động tốt hơn, ít nhất là trong trường hợp của tôi, và đó là một phương pháp rất linh hoạt, vì ai đó có thể thử với các tương tác và mô hình phù hợp khác nhau. Tôi chỉ muốn, bởi sự tò mò "thống kê" , để tìm hiểu lý do đằng sau các kết quả khác nhau. Về giá trị p, tôi đã nghe một số người chỉ chấp nhận mức ý nghĩa ở mức a = 0,5% hoặc ít hơn. Tôi linh hoạt hơn, sử dụng mức a = 1%, nhưng cơn đau đầu lớn xuất hiện khi các giá trị p hoàn toàn khác nhau.
Bill718

Tôi đã thấy các nghiên cứu chẳng hạn, trong đó một IV rất có ý nghĩa khi một modet logit được đặt hàng được sử dụng, trong khi IV tương tự trở nên không đáng kể khi áp dụng OLS. Vì vậy, trong trường hợp đó, việc giải thích kết quả có thể hơi khó. Cảm ơn rất nhiều cho ý kiến ​​và phản hồi của bạn!
Bill718

0.070.03

2

Trong trường hợp thứ hai, phần mềm tiêu chuẩn sẽ gợi ý cho bạn một chỉ số t với các giá trị t-student trong khi đối với trường hợp đầu tiên, các bài kiểm tra Wald có thể có hai tùy chọn. Theo giả định về tính quy tắc, thống kê Wald tuân theo một thống kê chính xác của Fisher (tương đương với thống kê t vì nó giả định tính quy tắc của lỗi). Trong khi theo quy tắc tiệm cận, thống kê Wald tuân theo phân phối Chi2 (nghĩa là phân tích theo chỉ số t sau phân phối bình thường theo phương pháp phân phối bình thường) Bạn đang giả định phân phối nào? Tùy thuộc vào điều này rủi ro giá trị p của bạn để cung cấp cho bạn kết quả khác nhau.

Trong Sách giáo khoa, bạn sẽ thấy rằng đối với các bài kiểm tra song phương (một tham số) cả hai, thống kê t-student và Fisher là tương đương.

Nếu mẫu của bạn không lớn thì việc so sánh so sánh giá trị chi2 và t-stat sẽ mang lại kết quả khác nhau. Trong trường hợp đó, giả sử một sự đóng góp không có triệu chứng sẽ không hợp lý. NẾU mẫu của bạn khá nhỏ thì giả sử tính chuẩn có vẻ hợp lý hơn, điều này hàm ý giá trị t-stat và Fisher cho trường hợp 2 và 1 tương ứng.


Thật vậy, tôi có hai mẫu có kích thước không bằng nhau, mẫu đầu tiên có 3000 quan sát, nhưng mẫu thứ hai tương đối nhỏ, 500 quan sát. Và phần mềm báo cáo chi bình phương khi tính toán thống kê Wald. Vì vậy, có vẻ như đây là lý do của sự khác biệt. Cả hai mẫu thường được phân phối, đặc biệt là trong trường hợp mẫu lớn. Cảm ơn nhiều!
Bill718

1
Tôi xin lỗi để lừa dối bạn nhưng kích thước mẫu không đồng đều không phải là vấn đề. Hơn nữa, bạn trông giống như một mẫu lớn đối với tôi. vì vậy cả hai thủ tục sẽ mang lại kết quả tương tự. Tôi nhận thấy rằng @probabilityislogic đã đưa ra một điểm tốt. Sử dụng một mẫu gộp hàm ý phương sai dư bằng nhau, do đó có thể là một nguồn không đồng nhất. Không biết làm thế nào bạn đang thực hiện quy trình hồi quy riêng, nhưng thật dễ mắc sai lầm nếu bạn tự tính toán chỉ số. Điều này làm cho hồi quy gộp là một cách tiếp cận đơn giản an toàn.
JDav

1
Để giải quyết vấn đề phương sai không đồng đều giữa các nhóm (không đồng nhất), hãy thử một công cụ ước tính phương sai White (hay Newey-west, Sandwich hoặc Robust nếu bạn sử dụng công cụ ước tính phương sai stata). Cách tiếp cận này sửa chữa cho các loại không đồng nhất.
JDav

Ồ, ok, tôi thấy, thực sự các quan sát trong mẫu đến từ các vùng khác nhau của một quốc gia, vì vậy rất có thể tôi đoán rằng các vấn đề không đồng nhất tồn tại!
Bill718
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.