Tôi thích các mô hình hỗn hợp Gaussian (GMM's).
Một trong những tính năng của chúng là, trong miền probit , chúng hoạt động như các bộ nội suy từng phần. Một hàm ý của điều này là chúng có thể hoạt động như một cơ sở thay thế, một xấp xỉ phổ quát. Điều này có nghĩa là đối với các phân phối không phải là Gaussian, như lognatural, weibull hoặc crazier không phân tích, miễn là một số tiêu chí được đáp ứng - GMM có thể xấp xỉ phân phối.
Vì vậy, nếu bạn biết các tham số của xấp xỉ tối ưu AICc hoặc BIC bằng GMM thì bạn có thể chiếu nó tới các kích thước nhỏ hơn. Bạn có thể xoay nó và nhìn vào các trục chính của các thành phần của GMM gần đúng.
Hậu quả sẽ là một cách thông tin và có thể truy cập trực quan để xem xét các phần quan trọng nhất của dữ liệu chiều cao hơn bằng cách sử dụng nhận thức trực quan xem 3d của chúng tôi.
EDIT: (điều chắc chắn, whuber)
Có một số cách để nhìn vào hình dạng.
- Bạn có thể nhìn vào xu hướng trong các phương tiện. Một logic bất thường được xấp xỉ bởi một loạt các Gaussian có nghĩa là tiến gần hơn và trọng lượng của chúng sẽ nhỏ hơn theo tiến trình. Tổng gần đúng đuôi nặng hơn. Trong kích thước n, một chuỗi các thành phần như vậy sẽ tạo ra một thùy. Bạn có thể theo dõi khoảng cách giữa các phương tiện (chuyển đổi sang kích thước cao) và hướng vũ trụ giữa là tốt. Điều này sẽ chuyển đổi sang kích thước dễ tiếp cận hơn nhiều.
- Bạn có thể tạo một hệ thống 3d có trục là trọng lượng, độ lớn của giá trị trung bình và độ lớn của phương sai / hiệp phương sai. Nếu bạn có số lượng cụm rất cao, đây là một cách để xem chúng so với nhau. Đó là một cách có giá trị để chuyển đổi các phần 50k với số đo 2k mỗi phần thành một vài đám mây trong không gian 3d. Tôi có thể thực thi điều khiển quá trình trong không gian đó, nếu tôi chọn. Tôi thích sự đệ quy của việc sử dụng mô hình hỗn hợp gaussian dựa trên các thành phần của mô hình hỗn hợp gaussian phù hợp với các tham số bộ phận.
- Về mặt khử lộn xộn, bạn có thể vứt bỏ trọng lượng rất nhỏ, hoặc theo trọng lượng trên mỗi hiệp phương sai, hoặc như vậy.
- R2
- Bạn có thể nhìn nó như những bong bóng giao nhau . Vị trí của xác suất bằng nhau (không phân kỳ Kullback-Leibler) tồn tại giữa mỗi cặp cụm GMM. Nếu bạn theo dõi vị trí đó, bạn có thể lọc theo xác suất thành viên tại vị trí đó. Nó sẽ cung cấp cho bạn các điểm của ranh giới phân loại. Điều này sẽ giúp bạn cô lập "kẻ cô độc". Bạn có thể đếm số lượng ranh giới như vậy trên ngưỡng cho mỗi thành viên và nhận danh sách "kết nối" cho mỗi thành phần. Bạn cũng có thể nhìn vào các góc và khoảng cách giữa các vị trí.
- Bạn có thể lấy mẫu lại không gian bằng cách sử dụng các số ngẫu nhiên được cung cấp các tệp Gaussian PDF, sau đó thực hiện phân tích thành phần nguyên tắc trên đó và xem xét các hình dạng bản địa và giá trị riêng liên quan đến chúng.
BIÊN TẬP:
Hình dạng có nghĩa là gì? Họ nói tính cụ thể là linh hồn của tất cả các giao tiếp tốt.
Bạn có ý nghĩa gì về "biện pháp"?
Ý tưởng về những gì nó có nghĩa là:
- Nhãn cầu cảm giác / cảm giác của hình thức chung. (cực kỳ chất lượng, khả năng tiếp cận trực quan)
- thước đo hình dạng GD & T (đồng phẳng, đồng tâm, v.v.) (cực kỳ định lượng)
- một cái gì đó số (giá trị riêng, hiệp phương sai, v.v ...)
- tọa độ kích thước giảm hữu ích (như tham số GMM trở thành kích thước)
- một hệ thống giảm tiếng ồn (được làm mịn theo một cách nào đó, sau đó được trình bày)
Hầu hết "một số cách" là một số biến thể về những điều này.