Làm thế nào để tính toán Đường dẫn đến Nhà Trắng bằng cách sử dụng R?


12

Tôi vừa xem qua phân tích tuyệt vời này vừa thú vị vừa đẹp mắt:

http://www.nytimes.com/interactive/2012/11/02/us/polencies/paths-to-the-white-house.html

Tôi tò mò làm thế nào một "cây đường dẫn" như vậy có thể được xây dựng bằng R. Dữ liệu và thuật toán nào mà người ta cần để xây dựng một cây đường dẫn như vậy?

Cảm ơn.


29

dễ dàng Eh @mbq?! ;-)
Tái lập Monica - G. Simpson

1
29

Câu trả lời:


10

Đó là tự nhiên để sử dụng một giải pháp đệ quy.

47

paths.compute <- function(start, options, states) {
  if (start > sum(options)) x <- list(Id="O", width=1)
  else if (start < -sum(options)) x <- list(Id="R", width=1)
  else if (length(options) == 0 && start == 0) x <- list(Id="*", width=1)
  else {
    l <- paths.compute(start+options[1], options[-1], states[-1])
    r <- paths.compute(start-options[1], options[-1], states[-1])
    x <- list(Id=states[1], L=l, R=r, width=l$width+r$width, node=TRUE)
  }
  class(x) <- "path"
  return(x)
}

states <- c("FL", "OH", "NC", "VA", "WI", "CO", "IA", "NV", "NH")
votes <- c(29, 18, 15, 13, 10, 9, 5, 6, 4)
p <- paths.compute(47, votes, states)

29= =512

Hình ảnh

plot.pathwidthpaths.compute1/512

Vị trí thẳng đứng của các nút được sắp xếp theo một chuỗi hình học (với tỷ lệ chung a) để khoảng cách gần nhau hơn ở các phần sâu hơn của cây. Độ dày của các nhánh và kích thước của các biểu tượng lá cũng được chia theo độ sâu. (Điều này sẽ gây ra vấn đề với các biểu tượng tròn ở lá, vì tỷ lệ khung hình của chúng sẽ thay đổi khi athay đổi. Tôi không bận tâm để khắc phục điều đó.)

paths.compute <- function(start, options, states) {
  if (start > sum(options)) x <- list(Id="O", width=1)
  else if (start < -sum(options)) x <- list(Id="R", width=1)
  else if (length(options) == 0 && start == 0) x <- list(Id="*", width=1)
  else {
    l <- paths.compute(start+options[1], options[-1], states[-1])
    r <- paths.compute(start-options[1], options[-1], states[-1])
    x <- list(Id=states[1], L=l, R=r, width=l$width+r$width, node=TRUE)
  }
  class(x) <- "path"
  return(x)
}

plot.path <- function(p, depth=0, x0=1/2, y0=1, u=0, v=1, a=.9, delta=0,
               x.offset=0.01, thickness=12, size.leaf=4, decay=0.15, ...) {
  #
  # Graphical symbols
  #
  cyan <- rgb(.25, .5, .8, .5); cyan.full <- rgb(.625, .75, .9, 1)
  magenta <- rgb(1, .7, .775, .5); magenta.full <- rgb(1, .7, .775, 1)
  gray <- rgb(.95, .9, .4, 1)
  #
  # Graphical elements: circles and connectors.
  #
  circle <- function(center, radius, n.points=60) {
    z <- (1:n.points) * 2 * pi / n.points
    t(rbind(cos(z), sin(z)) * radius + center)
  }
  connect <- function(x1, x2, veer=0.45, n=15, ...){
    x <- seq(x1[1], x1[2], length.out=5)
    y <- seq(x2[1], x2[2], length.out=5)
    y[2] = veer * y[3] + (1-veer) * y[2]
    y[4] = veer * y[3] + (1-veer) * y[4]
    s = spline(x, y, n)
    lines(s$x, s$y, ...)
  }
  #
  # Plot recursively:
  #
  scale <- exp(-decay * depth)
  if (is.null(p$node)) {
    if (p$Id=="O") {dx <- -y0; color <- cyan.full} 
    else if (p$Id=="R") {dx <- y0; color <- magenta.full}
    else {dx = 0; color <- gray}
    polygon(circle(c(x0 + dx*x.offset, y0), size.leaf*scale/100), col=color, border=NA)
    text(x0 + dx*x.offset, y0, p$Id, cex=size.leaf*scale)
  } else {  
    mid <- ((delta+p$L$width) * v + (delta+p$R$width) * u) / (p$L$width + p$R$width + 2*delta)
    connect(c(x0, (x0+u)/2), c(y0, y0 * a), lwd=thickness*scale, col=cyan, ...)
    connect(c(x0, (x0+v)/2), c(y0, y0 * a), lwd=thickness*scale, col=magenta,  ...)
    plot(p$L, depth=depth+1, x0=(x0+u)/2, y0=y0*a, u, mid, a, delta, x.offset, thickness, size.leaf, decay, ...)
    plot(p$R, depth=depth+1, x0=(x0+v)/2, y0=y0*a, mid, v, a, delta, x.offset, thickness, size.leaf, decay, ...)
  }
}

plot.grid <- function(p, y0=1, a=.9, col.text="Gray", col.line="White", ...) {
  #
  # Plot horizontal lines and identifiers.
  #
  if (!is.null(p$node)) {
    abline(h=y0, col=col.line, ...)
    text(0.025, y0*1.0125, p$Id, cex=y0, col=col.text, ...)
    plot.grid(p$L, y0=y0*a, a, col.text, col.line, ...)
    plot.grid(p$R, y0=y0*a, a, col.text, col.line, ...)
  }
}

states <- c("FL", "OH", "NC", "VA", "WI", "CO", "IA", "NV", "NH")
votes <- c(29, 18, 15, 13, 10, 9, 5, 6, 4)
p <- paths.compute(47, votes, states)

a <- 0.925
eps <- 1/26
y0 <- a^10; y1 <- 1.05

mai <- par("mai")
par(bg="White", mai=c(eps, eps, eps, eps))
plot(c(0,1), c(a^10, 1.05), type="n", xaxt="n", yaxt="n", xlab="", ylab="")
rect(-eps, y0 - eps * (y1 - y0), 1+eps, y1 + eps * (y1-y0), col="#f0f0f0", border=NA)
plot.grid(p, y0=1, a=a, col="White", col.text="#888888")
plot(p, a=a, delta=40, thickness=12, size.leaf=4, decay=0.2)
par(mai=mai)

2
Đó là một giải pháp khá hay. Và đồ họa rất ấn tượng. Ngoài ra còn có một partitionsgói có thể đã cung cấp một cấu trúc để liệt kê các khả năng.
DWin

Wow, Whuber, không có đủ V để đánh dấu câu trả lời của bạn!
Tal Galili
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.