Kiểm tra Wald trong hồi quy (OLS và GLM): phân phối so với z


22

Tôi hiểu rằng bài kiểm tra Wald cho các hệ số hồi quy dựa trên thuộc tính sau có tính chất tiệm cận (ví dụ: Wasserman (2006): Tất cả các số liệu thống kê , trang 153, 214-215): Trong đó biểu thị hệ số hồi quy ước tính, biểu thị lỗi tiêu chuẩn của hệ số hồi quy và là giá trị quan tâm ( thường là 0 để kiểm tra xem hệ số có phải là khác biệt đáng kể so với 0). Vì vậy, kích thước Wald test là: từ chối khi

(β^-β0)se^(β^)~N(0,1)
β^se^(β^)β0β0αH0|W|>zα/2 trong đó
W= =β^se^(β^).

Nhưng khi bạn thực hiện hồi quy tuyến tính với lmtrong R, giá trị thay vì giá trị được sử dụng để kiểm tra xem hệ số hồi quy có khác biệt đáng kể so với 0 (với ) không. Hơn nữa, đầu ra của R đôi khi cho - và đôi khi giá trị làm thống kê kiểm tra. Rõ ràng, giá trị được sử dụng khi tham số phân tán được giả sử là đã biết và giá trị được sử dụng khi tham số phân tán được xác định (xem liên kết này ).tzsummary.lmglmztzt

Ai đó có thể giải thích, tại sao một phân phối đôi khi được sử dụng cho thử nghiệm Wald mặc dù tỷ lệ của hệ số và sai số chuẩn của nó được giả sử là được phân phối như tiêu chuẩn thông thường?t

Chỉnh sửa sau khi câu hỏi đã được trả lời

Bài đăng này cũng cung cấp thông tin hữu ích cho câu hỏi.


2
Điều gì khiến bạn nghĩ rằng thống kê kiểm tra được báo cáo nhất thiết phải là kiểm tra Wald?
Glen_b -Reinstate Monica

3
Bởi vì giá trị - hoặc t luôn là hệ số chia cho sai số chuẩn của nó trong và . ztlmglm
COOLSerdash

Câu trả lời:


20

Đầu ra từ glmviệc sử dụng phân phối Poisson cho giá trị vì với phân phối Poisson, tham số trung bình và phương sai là như nhau. Trong mô hình Poisson, bạn chỉ phải ước tính một tham số duy nhất ( λ ). Trong đó bạn phải ước tính cả tham số trung bình phân tán, bạn sẽ thấy phân phối t được sử dụng.zλglmt

Đối với hồi quy tuyến tính tiêu chuẩn, bạn giả sử thuật ngữ lỗi thường được phân phối. Ở đây, tham số phương sai phải được ước tính - do đó sử dụng phân phối cho thống kê kiểm tra. Nếu bạn bằng cách nào đó biết phương sai dân số cho cụm từ lỗi, bạn có thể sử dụng thống kê z -test thay thế.tz

t


3

Trong khung GLM, nói chung, thống kê kiểm tra W mà bạn đã đề cập phân phối không có triệu chứng Bình thường , đó là lý do tại sao bạn thấy trong R các giá trị z .

Bên cạnh đó, khi giao dịch với một mô hình tuyến tính, tức là một GLM với một biến phản ứng phân phối bình thường, sự phân bố của thống kê kiểm tra một t của Student , vì vậy trong R bạn có t giá trị.

Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.