Với mô hình logit đa cực, bạn áp đặt ràng buộc rằng tất cả các xác suất dự đoán cộng lại thành 1. Khi bạn sử dụng mô hình logit nhị phân riêng biệt, bạn không còn có thể áp đặt ràng buộc đó nữa, chúng được ước tính trong các mô hình riêng biệt. Vì vậy, đó sẽ là sự khác biệt chính giữa hai mô hình.
Như bạn có thể thấy trong ví dụ dưới đây (Trong Stata, vì đó là chương trình tôi biết rõ nhất), các mô hình có xu hướng tương tự nhưng không giống nhau. Tôi sẽ đặc biệt cẩn thận về ngoại suy xác suất dự đoán.
// some data preparation
. sysuse nlsw88, clear
(NLSW, 1988 extract)
.
. gen byte occat = cond(occupation < 3 , 1, ///
> cond(inlist(occupation, 5, 6, 8, 13), 2, 3)) ///
> if !missing(occupation)
(9 missing values generated)
. label variable occat "occupation in categories"
. label define occat 1 "high" ///
> 2 "middle" ///
> 3 "low"
. label value occat occat
.
. gen byte middle = (occat == 2) if occat !=1 & !missing(occat)
(590 missing values generated)
. gen byte high = (occat == 1) if occat !=2 & !missing(occat)
(781 missing values generated)
// a multinomial logit model
. mlogit occat i.race i.collgrad , base(3) nolog
Multinomial logistic regression Number of obs = 2237
LR chi2(6) = 218.82
Prob > chi2 = 0.0000
Log likelihood = -2315.9312 Pseudo R2 = 0.0451
-------------------------------------------------------------------------------
occat | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------+----------------------------------------------------------------
high |
race |
black | -.4005801 .1421777 -2.82 0.005 -.6792433 -.121917
other | .4588831 .4962591 0.92 0.355 -.5137668 1.431533
|
collgrad |
college grad | 1.495019 .1341625 11.14 0.000 1.232065 1.757972
_cons | -.7010308 .0705042 -9.94 0.000 -.8392165 -.5628451
--------------+----------------------------------------------------------------
middle |
race |
black | .6728568 .1106792 6.08 0.000 .4559296 .889784
other | .2678372 .509735 0.53 0.599 -.7312251 1.266899
|
collgrad |
college grad | .976244 .1334458 7.32 0.000 .714695 1.237793
_cons | -.517313 .0662238 -7.81 0.000 -.6471092 -.3875168
--------------+----------------------------------------------------------------
low | (base outcome)
-------------------------------------------------------------------------------
// separate logits:
. logit high i.race i.collgrad , nolog
Logistic regression Number of obs = 1465
LR chi2(3) = 154.21
Prob > chi2 = 0.0000
Log likelihood = -906.79453 Pseudo R2 = 0.0784
-------------------------------------------------------------------------------
high | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------+----------------------------------------------------------------
race |
black | -.5309439 .1463507 -3.63 0.000 -.817786 -.2441017
other | .2670161 .5116686 0.52 0.602 -.735836 1.269868
|
collgrad |
college grad | 1.525834 .1347081 11.33 0.000 1.261811 1.789857
_cons | -.6808361 .0694323 -9.81 0.000 -.816921 -.5447512
-------------------------------------------------------------------------------
. logit middle i.race i.collgrad , nolog
Logistic regression Number of obs = 1656
LR chi2(3) = 90.13
Prob > chi2 = 0.0000
Log likelihood = -1098.9988 Pseudo R2 = 0.0394
-------------------------------------------------------------------------------
middle | Coef. Std. Err. z P>|z| [95% Conf. Interval]
--------------+----------------------------------------------------------------
race |
black | .6942945 .1114418 6.23 0.000 .4758725 .9127164
other | .3492788 .5125802 0.68 0.496 -.6553598 1.353918
|
collgrad |
college grad | .9979952 .1341664 7.44 0.000 .7350339 1.260957
_cons | -.5287625 .0669093 -7.90 0.000 -.6599023 -.3976226
-------------------------------------------------------------------------------