Nếu bạn dự định thực hiện nhiều số liệu thống kê Bayes, bạn sẽ thấy hữu ích khi học ngôn ngữ BUGS / JAGS, có thể được truy cập trong R thông qua các gói R2OpenBUGS hoặc R2WinBUGS.
Tuy nhiên, vì một ví dụ nhanh không yêu cầu hiểu cú pháp BUGS, bạn có thể sử dụng gói "bayesm" có chức năng runiregGibbs để lấy mẫu từ phân phối sau. Dưới đây là một ví dụ với dữ liệu tương tự như dữ liệu mà bạn mô tả .....
library(bayesm)
podwt <- structure(list(wt = c(1.76, 1.45, 1.03, 1.53, 2.34, 1.96, 1.79, 1.21, 0.49, 0.85, 1, 1.54, 1.01, 0.75, 2.11, 0.92), treat = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("I", "U"), class = "factor"), mus = c(4.15, 2.76, 1.77, 3.11, 4.65, 3.46, 3.75, 2.04, 1.25, 2.39, 2.54, 3.41, 1.27, 1.26, 3.87, 1.01)), .Names = c("wt", "treat", "mus"), row.names = c(NA, -16L), class = "data.frame")
# response
y1 <- podwt$wt
# First run a one-way anova
# Create the design matrix - need to insert a column of 1s
x1 <- cbind(matrix(1,nrow(podwt),1),podwt$treat)
# data for the Bayesian analysis
dt1 <- list(y=y1,X=x1)
# runiregGibbs uses a normal prior for the regression coefficients and
# an inverse chi-squared prior for va
# mean of the normal prior. We have 2 estimates - 1 intercept
# and 1 regression coefficient
betabar1 <- c(0,0)
# Pecision matrix for the normal prior. Again we have 2
A1 <- 0.01 * diag(2)
# note this is a very diffuse prior
# degrees of freedom for the inverse chi-square prior
n1 <- 3
# scale parameter for the inverse chi-square prior
ssq1 <- var(y1)
Prior1 <- list(betabar=betabar1, A=A1, nu=n1, ssq=ssq1)
# number of iterations of the Gibbs sampler
iter <- 10000
# thinning/slicing parameter. 1 means we keep all all values
slice <- 1
MCMC <- list(R=iter, keep=slice)
sim1 <- runiregGibbs(dt1, Prior1, MCMC)
plot(sim1$betadraw)
plot(sim1$sigmasqdraw)
summary(sim1$betadraw)
summary(sim1$sigmasqdraw)
# compare with maximum likelihood estimates:
fitpodwt <- lm(wt~treat, data=podwt)
summary(fitpodwt)
anova(fitpodwt)
# now for ordinary linear regression
x2 <- cbind(matrix(1,nrow(podwt),1),podwt$mus)
dt2 <- list(y=y1,X=x2)
sim2 <- runiregGibbs(dt1, Prior1, MCMC)
summary(sim1$betadraw)
summary(sim1$sigmasqdraw)
plot(sim$betadraw)
plot(sim$sigmasqdraw)
# compare with maximum likelihood estimates:
summary(lm(podwt$wt~mus,data=podwt))
# now with both variables
x3 <- cbind(matrix(1,nrow(podwt),1),podwt$treat,podwt$mus)
dt3 <- list(y=y1,X=x3)
# now we have an additional estimate so modify the prior accordingly
betabar1 <- c(0,0,0)
A1 <- 0.01 * diag(3)
Prior1 <- list(betabar=betabar1, A=A1, nu=n1, ssq=ssq1)
sim3 <- runiregGibbs(dt3, Prior1, MCMC)
plot(sim3$betadraw)
plot(sim3$sigmasqdraw)
summary(sim3$betadraw)
summary(sim3$sigmasqdraw)
# compare with maximum likelihood estimates:
summary(lm(podwt$wt~treat+mus,data=podwt))
Chiết xuất từ đầu ra là:
Anova:
Bayesian:
Summary of Posterior Marginal Distributions
Moments
mean std dev num se rel eff sam size
1 2.18 0.40 0.0042 0.99 9000
2 -0.55 0.25 0.0025 0.87 9000
Quantiles
2.5% 5% 50% 95% 97.5%
1 1.4 1.51 2.18 2.83 2.976
2 -1.1 -0.97 -0.55 -0.13 -0.041
lm ():
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.6338 0.1651 9.895 1.06e-07 ***
treatU -0.5500 0.2335 -2.355 0.0336 *
Hồi quy tuyến tính đơn giản:
Bayesian:
Summary of Posterior Marginal Distributions
Moments
mean std dev num se rel eff sam size
1 0.23 0.208 0.00222 1.0 4500
2 0.42 0.072 0.00082 1.2 4500
Quantiles
2.5% 5% 50% 95% 97.5%
1 -0.18 -0.10 0.23 0.56 0.63
2 0.28 0.31 0.42 0.54 0.56
lm ():
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.23330 0.14272 1.635 0.124
mus 0.42181 0.04931 8.554 6.23e-07 ***
Mô hình đồng biến 2:
Bayesian:
Summary of Posterior Marginal Distributions
Moments
mean std dev num se rel eff sam size
1 0.48 0.437 0.00520 1.3 4500
2 -0.12 0.184 0.00221 1.3 4500
3 0.40 0.083 0.00094 1.2 4500
Quantiles
2.5% 5% 50% 95% 97.5%
1 -0.41 -0.24 0.48 1.18 1.35
2 -0.48 -0.42 -0.12 0.18 0.25
3 0.23 0.26 0.40 0.53 0.56
lm ():
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.36242 0.19794 1.831 0.0901 .
treatU -0.11995 0.12688 -0.945 0.3617
mus 0.39590 0.05658 6.997 9.39e-06 ***
từ đó chúng ta có thể thấy rằng các kết quả có thể so sánh rộng rãi, như mong đợi với các mô hình đơn giản và các linh mục khuếch tán này. Tất nhiên cũng đáng để kiểm tra các lô chẩn đoán MCMC - mật độ sau, âm mưu theo dõi, tương quan tự động - mà tôi cũng đã đưa ra mã cho ở trên (các ô không được hiển thị).