Câu hỏi được gắn thẻ «least-squares»

Đề cập đến một kỹ thuật ước lượng chung chọn giá trị tham số để giảm thiểu chênh lệch bình phương giữa hai đại lượng, chẳng hạn như giá trị quan sát của một biến và giá trị dự kiến ​​của quan sát đó dựa trên giá trị tham số. Các mô hình tuyến tính Gaussian phù hợp với các bình phương tối thiểu và bình phương nhỏ nhất là ý tưởng làm cơ sở cho việc sử dụng lỗi bình phương trung bình (MSE) như một cách đánh giá một công cụ ước tính.


4
Hồi quy sườn: thường xuyên hướng tới một giá trị
Ước tính hồi quy sườn truyền thống là β^ridge=(XTX+λI)−1XTYβ^ridge=(XTX+λI)−1XTY \hat{\beta}_{ridge} = (X^TX+\lambda I)^{-1} X^T Y bắt nguồn từ việc thêm thời hạn phạt λ||β||22λ||β||22\lambda ||\beta||^2_2. Tôi đã phải vật lộn để tìm tài liệu về việc thường xuyên hướng tới một giá trị cụ thể . Cụ thể, tôi đã …

Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.