Câu hỏi được gắn thẻ «advection»

2
Dao động lạ khi giải phương trình thăng tiến bằng sai phân hữu hạn với các điều kiện biên Neumann đóng hoàn toàn (phản xạ tại các biên)
Tôi đang cố gắng giải phương trình thăng tiến nhưng có một dao động lạ xuất hiện trong lời giải khi sóng phản xạ từ ranh giới. Nếu bất cứ ai đã nhìn thấy vật phẩm này trước khi tôi quan tâm để biết nguyên nhân và làm thế nào …

2
Có phải Crank-Nicolson là một sơ đồ phân tách ổn định cho phương trình Phản ứng-Khuếch tán-Lời khuyên (đối lưu)?
Tôi không quen thuộc lắm với các chương trình phân biệt đối xử phổ biến cho các PDE. Tôi biết rằng Crank-Nicolson là sơ đồ phổ biến để phân biệt phương trình khuếch tán. Cũng là một lựa chọn tốt cho nhiệm kỳ thăng tiến? Tôi rất thú vị khi …

1
Bảo toàn một đại lượng vật lý khi sử dụng các điều kiện biên Neumann áp dụng cho phương trình khuếch tán tiến
Tôi không hiểu hành vi khác nhau của phương trình khuếch tán khi tôi áp dụng các điều kiện biên khác nhau. Động lực của tôi là mô phỏng một đại lượng vật lý thực (mật độ hạt) dưới sự khuếch tán và tiến lên. Mật độ hạt nên được …

2
Các sơ đồ sai phân hữu hạn cho phương trình tiến
Có rất nhiều sơ đồ FD cho phương trình tiến lên thảo luận trên web. Ví dụ ở đây: http://farside.ph.utexas.edu/teaching/329/lectures/node89.html∂T∂t+u∂T∂x=0∂T∂t+u∂T∂x=0\frac{\partial T}{\partial t}+u\frac{\partial T}{\partial x}=0 Nhưng tôi chưa thấy ai đề xuất một sơ đồ hướng gió "ngầm" như thế này: .Tn+1i−Tniτ+uTn+1i−Tn+1i−1hx=0Tin+1−Tinτ+uTin+1−Ti−1n+1hx=0\frac{T^{n+1}_i-T^{n}_i}{\tau}+u\frac{T^{n+1}_i-T^{n+1}_{i-1}}{h_x}=0 Tất cả các sơ đồ ngược mà tôi thấy …



5
Làm thế nào tôi có thể rút ra một ràng buộc trên các dao động giả trong giải pháp số của phương trình tiến 1D?
Giả sử tôi có vấn đề tiến bộ 1D định kỳ sau: trongΩ=[0,1]u(0,t)=u(1,t)u(x,0)=g(x) nơig(x)có một gián đoạn nhảy tạix*∈(0,1). ∂bạn∂t+ C ∂bạn∂x= 0∂u∂t+c∂u∂x=0\frac{\partial u}{\partial t} + c\frac{\partial u}{\partial x} = 0Ω = [ 0 , 1 ]Ω=[0,1]\Omega=[0,1] u ( 0 , t ) = u ( 1 , t )u(0,t)=u(1,t)u(0,t)=u(1,t) …

Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.