Tìm phân phối và chuyển đổi sang phân phối bình thường


8

Tôi có dữ liệu mô tả tần suất một sự kiện diễn ra trong một giờ ("số lượng mỗi giờ", nph) và thời gian các sự kiện kéo dài ("thời gian tính bằng giây mỗi giờ", dph).

Đây là dữ liệu gốc:

nph <- c(2.50000000003638, 3.78947368414551, 1.51456310682008, 5.84686774940732, 4.58823529414907, 5.59999999993481, 5.06666666666667, 11.6470588233699, 1.99999999998209, NA, 4.46153846149851, 18, 1.05882352939726, 9.21739130425452, 27.8399999994814, 15.3750000002237, NA, 6.00000000004109, 9.71428571436649, 12.4848484848485, 16.5034965037115, 20.6666666666667, 3.49999999997453, 4.65882352938624, 4.74999999996544, 3.99999999994522, 2.8, 14.2285714286188, 11.0000000000915, NA, 2.66666666666667, 3.76470588230138, 4.70588235287673, 13.2727272728677, 2.0000000000137, 18.4444444444444, 17.5555555555556, 14.2222222222222, 2.00000000001663, 4, 8.46153846146269, 19.2000000001788, 13.9024390245481, 13, 3.00000000004366, NA, 7.36000000006855, 1.61137440758472, 1.50000000000873, 3.36585365857481, 22.3750000003256, 10.8387096775008, 2.92307692305075, 3.48837209304214, 5.17647058827074, 37.6666666666667, 1.17647058824335, 7.45454545462435, 36.2352941171508, 6.82352941167125, 2.22222222222222, 6.13333333333333, 11.4285714286665, 42.7058823523563, 28.1052631584975, 18.3333333333333, 1.24999999999091, 5.1034482758211, 1.82857142855926, 1.30693069306629, 3.22222222222222, 17.2800000001609, 10.5714285715165, 7.81818181826456, 3.14285714288328, 4.05194805197256, 3.6, 23.0909090904203, 0.249999999998181, 10, 27.3043478258106, 2.49999999998181, 2.00000000001663, 9.14285714293317, 4.74999999996544, 29.3999999996577, 16.9999999998021, 15.7777777777778, 1.74999999998727, 3.46666666666667, 2.45161290324422, 2.05231388331614, 2.60000000001513, 15.4054054053569, 4, 12.2222222222222, 2.46153846151642, 8.15384615399219, 2.23529411761644, 15.1111111111111, 0.23529411764867, 10.5454545455661, 17.5714285715747, 2.3030303030303, 1.37931034481651, 8.32000000007749, 5.1578947368105, 24.1999999997183, 15.4782608694085, 21.8749999998408, 2.74999999997999, 9.91304347823578, 3.86206896548623, 1.16959064328441, 2.84210526319272, 12.857142856929, 4, 3.69230769227463, 2, NA, 1.88888888888889, 15.4285714283148, 0.222222222222222, 6.16666666666667, 13.1034482757569, 3.19999999996275, 4.87499999996453, 2.88000000002682, 5.12499999996271, 26.6666666666667, 9.75000000014188, 17.2048192770602, 1.99999999998545, 1.65517241377981, 3.16666666666667, 2.23529411766237, 6.82352941181143, 2.74999999991996, 2.99999999997817, 11.4929577463281, 1.59999999998137, 8.65116279074452, 5.69230769240964, 13.7777777777778, 0.222222222222222, 10.6000000002468, 13.91304347812, 2.75862068963302, NA, 4.26666666666667, 5.64705882356808, 2.74999999997999, 15.047619047619, 16.6666666666667, 1.49999999998909, 4.62499999996635, 5.71428571428571, 1.83206106868927, 2.44444444444444, 2.4, 3.9999999999709, 2.33333333333333, 3.20000000007451, 5.931034482711, 7.14285714273835, 14.7272727274286, 0.352941176465754, 8.40000000019558, 10.1250000001473, 2.66666666666667, NA, 2.66666666666667, 4.7058823529734, 4.83333333333333, 9.31034482751146, 24.5882352937809, 2.13333333333333, 10.1739130434525, 5.56521739124801, 2.12658227848728, 1.88888888888889, 5.80000000013504, 7.14285714291654, 1.71428571429997, 1.99999999994179, NA, 5.00000000007276, NA, 0.129032258062578, 8.22222222222222, 7.16666666666667, 4.13793103444954, 2.82352941178404, 3.07692307697818, 4.00000000004902, 4.74999999986176, 9.75000000014188, 20.1333333333333, 2.66666666666667, 6.78947368416893, 1.46666666666667, 1.73195876289076, 4.76923076931619, 2.88888888888889, 7.4285714286332, 5.2, 3.384615384676, 4.7727272727399, 6.59999999992317, 11.4545454546667, 1.41176470586302, 11.1999999998696, 6.08000000005662, 4, 4.71428571432492, 5.00000000004158, 6.8, 6.83870967747072, 14.2500000002074, 5.49999999983993, 2.4, 4.71910112354612, 4, 1.72185430463842, 2.44444444444444, 4.30769230776946, 6.30769230780528, 3.53846153852491, 4.35294117641097, NA, 5.99999999990022, NA, NA, 7.42857142857143, 10.1333333333333, 6.79999999992084, 5.54838709681587, 1.83333333333333, 7.06666666666667, 2.9090909091217, 10.8000000001006, NA, 2.13333333333333, NA, 5.09090909090909, 4.21052631570563, 4.00000000003326, 4.28571428571429, 4.28571428574992, 2.49999999998181, 2.76923076928037, 4.99999999985448, 3.87500000005639, NA, NA, 12.2105263159391, 5.44444444444444, 2.6249999999809, 3.74193548389907, 3.28571428574161, 4.88888888888889, 9.33333333333333, 4.21621621620295, NA, 0.8, 4.5306122448549, 4.14285714289159, 3.1137724550985, 0.266666666666667, 5.27272727261567, 1.84615384613731, 8.36363636372488, 2.42857142853104, NA, 2.42857142853104, 8.28571428578318, 1.64705882350685, 8.2, 6.88888888888889, 1.74999999998727, 7.6, 3.33333333333333, 6.24999999995453, 9.56521739120752, 4.93333333333333, 16.4, 2.53333333333333, 7.2, 1.33333333333333, 3.3962264151018, 2, 9.38461538453135, 1.57142857144164, 3.45454545458201, 5.37499999996089, 7.74193548375467, 3.38461538458508, 7, NA, 4.54545454545455, 14.5, 1.93939393939394, 4.33333333333333, 4, 6.58823529402741, 2.90909090902933, 3.32530120480995, 25.6666666666667, 2, 6.54545454545455, 4.4, 3.54378818739119, 1.62499999998818, 4.22222222222222, 2.53333333333333, 14.6666666666667, 2.96296296296296, NA, 3.00000000004366, 16.1999999998114, 1.55555555555556, 3.11111111111111, NA, 4.8, 3.99999999997339, 4, 6.37499999995362, 2.7999999999674, NA, 32.8, 2.49999999998181, 11.0561797754255, NA, 2.75229357793903, 1.7142857142572, 7.66666666666667, 7.28571428577487, 2.36363636358633, 2.14285714287496, 6.27272727274387, 3.62499999997362, 19.6666666666667, 1.71428571427431, 6.60869565210701, 5.57894736838687, 5.84615384610149, 3.03030303030303, 1.33333333333333, 4.87499999996453, 4.71428571432492, 4.74418604653732, 13.0588235292329, 3.12500000004547, NA, 3.37500000004911, 2.41525423729648, 2.37499999998272, 4.54545454550265, 6.28571428576655, 2.55555555555556, 3.17647058819179, 5.59999999993481, 5.85714285719156, 7.42857142844789, NA, 4.83333333333333, 5.33333333333333, 4.48484848484848, 2.93333333333333, 3.83333333333333, 5.52941176474375, 9.33333333333333, 5.16666666666667, 18, 2.82352941178404, 5.54838709681587, 3.55555555555556, 1.25237191650965, 2, 2.16666666666667, 7.16666666666667, 3.00000000002495, 2.83333333333333, 2.48275862068966, 4.42857142860825, 11.1428571426718, NA, 5.52380952380952, 34.3448275859312, 4.75000000006912, 3.26315789471685, 10.2857142857998, 10.5555555555556, 5.00000000004158, 19.0843373493441, 20.6153846152, 2.24999999998363, 8.59259259259259, 4.25806451616101, 2.85714285716014, 5.1578947368105, 8.66666666666667, 3.14285714280487, 6.30769230763582, 6.79999999992084, 8.07692307663376, 5.73333333333333, 8.46153846146269, 2.34482758618807, 4.31999999991953, 4.57142857135254, 2.87500000004184, 2.28571428567627, 0.857142857149985, 10.2352941175069, 3.26086956520914, NA, 13.3333333333333, 2.75000000004002, 6.45161290312889, 3.61290322575218, 1.48854961831995, 3.37499999997544, 4.0540540540413, 5.73333333333333, 3.85714285707871, 3, 6.31578947364551, 1.55555555555556, 7.84615384608358, 0.4, 7.66666666666667, NA, 7.85185185185185, 2.59090909091595, 7.28571428577487, 5.74999999995816, 3.28571428574161, 16.043478260829, 15.8000000003679, 2.50000000003638, NA, 2.06451612904776, 1.82163187855948, 0.874999999993634, 13.2000000001229, 6.92307692301493, 3.7142857143166, 3.00000000001343, 5.83333333333333, 3.86666666666667, 9.39999999989057, 2.49999999998181, 6.24000000005811, 4.58823529414907, 3.72413793109428, 3.21428571427235, 6.85714285719988, 8.42857142864151, 5.23076923086291, 10.5454545455661, 14.1428571429747, 4.00000000005821, 4.08791208795393, 8.47058823517811, 3.94422310755509, 3.62500000005275, 6.0000000001397, 1.33333333333333, 3.73333333333333, 6.31578947352942, NA, 4.53333333333333, 8.46153846169001, 0.470588235287673, 2.28571428571429, 22.7142857144746, 8.00000000012846, 2.8108108108285, 4.57142857146658, 5.87500000008549, 6.42857142862488, 19.2258064513241, 13.4666666666667, 3.46666666666667, 4.90322580648844, 3.51515151515152, 1.56862745098755, 1.53846153844776, 3.63636363636364, 4.71428571432492, 3.06666666666667, 4.61538461546728, NA, 2.83333333333333, 5.53846153841194, 1.80645161287609, 9.14285714285714, 2.42857142853104, 3.2, 5.00000000007276, 4.42857142860825, 6.12500000008913, 3.24999999990541, 4.16326530608288, 14.6666666666667, 5.37499999996089, 7.43478260867684, 9.93548387104236, 3.73205741626378, 2.24999999998363, 13.7777777777778, 4.74074074074074, 7.4285714286332, 3.61904761904762, 7.13513513511269, 5.28571428575824, 5, 2.5882352940822, 11.5000000001673, 27.1249999998026, 2.875, 2.81081081077544, 9.42857142864983, 7.05882352931509, 3.83333333333333, 16.8695652172205, 16.7692307690806, 10.1333333333333, 5.45454545455989, 7.8750000001146, 1.6883116883219, 2.66666666666667, 11.7857142856653, 3.33333333333333, 6.33333333333333, 7.39999999991385, 12.5882352942039, 4.00000000003326, 6.72727272734392, 3.03030303030303, 6, 30.6666666666667, 3.74999999997272, 3.00000000003011, 8.00000000006652, 8.00000000006009, 2.57142857144995, 10.695652173886, 14.2666666666667, 7.75000000011278, 2.51162790697674, 6.33333333333333, 3.28125000004775, 1.88888888888889, 10.4000000002421, 4.87499999996453, 13.7142857143998, 8.5, NA, 4.87499999996453, 8.181818181645, 1.24999999999091, 4.38095238095238, 27.1764705878631, 2.37499999998272, 2.94117647060838, 11.7142857143831, 5.99999999996324, 2.37499999998272, 14.7637795275455, 14.313253012008)
dph <- c(3.12500000004547, 6.69473684199041, 4.3106796117187, 11.6937354988146, 103.882352941888, 10.9999999998719, 7.33333333333333, 20.3529411761918, 5.23076923072239, NA, 4.61538461534328, 47.5555555555556, 2.94117647054795, 18.9565217389385, 44.3199999991745, 28.5000000004147, NA, 10.4705882353658, 19.000000000158, 25.8181818181818, 43.2167832173461, 51.5555555555556, 8.37499999993906, 6.91764705878563, 9.37499999993179, 5.64705882345207, 4.53333333333333, 27.4285714286627, 14.4285714286914, NA, 1.6, 5.76470588227399, 4.70588235287673, 55.2727272733122, 2.11764705883803, 30.8888888888889, 41.2222222222222, 23.4444444444444, 2.42857142859162, 6.2, 17.0769230767702, 21.2800000001982, 40.8292682931466, 14.5, 6.25000000009095, NA, 15.0400000001401, 5.68720379147547, 2.40000000001397, NA, 26.3750000003838, 18.0645161291679, 3.99999999996418, 6.13953488375417, 8.47058823535212, 128.666666666667, 2.23529411766237, 34.1818181821799, 115.999999998411, 5.99999999991782, 5.77777777777778, 10.6666666666667, 15.4285714286997, 54.8235294110138, 81.315789475428, 42.3333333333333, 1.74999999998727, 7.99999999993577, 4.34285714282825, 1.90099009900552, 5.22222222222222, 39.840000000371, 25.1428571430662, 7.81818181826456, 8.57142857149985, 15.2727272728196, 6.4, 93.0909090889387, 0.374999999997272, 23.1666666666667, 29.3913043475286, 0.874999999993634, 1.71428571429997, 13.5714285715414, 5.49999999995998, 134.799999998431, 77.7999999990943, 18, 2.24999999998363, 5.73333333333333, 3.09677419357165, 2.29376257547098, 5.70000000003318, 23.1891891891162, 14, 13.5555555555556, 1.69230769229254, 9.23076923093455, 4.35294117641097, 48.6666666666667, 0.352941176473005, 16.0000000001693, 56.7142857147573, 1.81818181818182, 1.37931034481651, 19.6800000001833, 6.63157894732779, 134.999999998428, 41.0434782604541, 26.8749999998045, 3.62499999997362, 16.5652173912624, 10.3448275861238, 1.28654970761285, 2.94736842108875, 13.4285714283481, 7.6, 3.2307692307403, 2, NA, 3.44444444444444, 93.1428571413081, 0.111111111111111, 13.6666666666667, 28.1379310342568, 2.39999999997206, 7.8749999999427, 4.00000000003725, 6.99999999994907, 60, 26.8750000003911, 30.5060240963, 3.12499999997726, 3.17241379307798, 4.83333333333333, 9.29411764712247, 12.7058823530282, 4.24999999987631, 6.99999999994907, 9.97183098578469, 2.39999999997206, 8.93023255818789, 15.3846153848909, 94, 0.111111111111111, 21.4000000004983, 29.9130434779581, 1.24137931033486, NA, 15.8666666666667, 7.17647058828444, 1.49999999998909, 37.9047619047619, 27.6666666666667, 1.74999999998727, 9.37499999993179, 17.3333333333333, 11.603053435032, 5.33333333333333, 2.8, 7.99999999994179, 3.5, 1.60000000003725, 7.31034482752751, 6.42857142846452, 56.7272727278731, 0, 21.6000000005029, 28.8750000004202, 1.6, NA, 4.5, 5.64705882356808, 7.16666666666667, 36.2068965514334, 40.235294117096, 4.8, 22.3043478260305, 8.86956521730152, 3.94936708861923, 3.33333333333333, 12.6000000002934, 20.0000000001663, 1.28571428572498, 0.749999999978172, NA, 6.25000000009095, NA, 0.258064516125156, 18.6666666666667, 17, 5.51724137926605, 2.58823529413537, 11.0769230771215, 5.26315789480134, 11.4999999996653, 34.1250000004966, 42.4, 6.53333333333333, 33.1578947366389, 4.4, 4.9484536082593, 11.2307692309704, 5.11111111111111, 23.8571428573412, 0.4, 2.30769230773364, 6.81818181819986, 8.19999999990454, 26.7272727275556, 0.352941176465754, 24.1999999997183, 7.04000000006557, 2.5, 7.14285714291654, 11.4285714286665, 12.1333333333333, 2.83870967744068, 42.7500000006221, 4.99999999985448, 3.33333333333333, 10.112359550456, 16.8, 4.23841059603303, 2.22222222222222, 14.4615384617975, 15.6923076925887, 3.23076923082709, 1.05882352939726, NA, 7.42857142844789, NA, NA, 16.952380952381, 12.4, 6.29999999992666, 85.4193548393512, 4.33333333333333, 11.8666666666667, 6.0000000000635, 19.6800000001833, NA, 3.46666666666667, NA, 13.0909090909091, 12.6315789471169, 5.14285714289991, 9.14285714285714, 12.1428571429581, 2.87499999997908, 1.692307692338, 10.2499999997017, 5.00000000007276, NA, NA, 19.578947368661, 10.4444444444444, 1.74999999998727, 4.77419354842295, 8.57142857149985, 9.66666666666667, 13.5238095238095, 7.29729729727434, NA, 1.6, 9.18367346930048, 6.85714285719988, 4.5508982036055, 0.666666666666667, 10.90909090886, 2.61538461536119, 6.1818181818836, 1.57142857140244, NA, 1.99999999996674, 24.4285714287746, 0.941176470575345, 16.6, 17.6666666666667, 0.999999999992724, 10.2666666666667, 7.5, 11.2499999999181, 11.9999999998785, 12.8, 29.7333333333333, 5.33333333333333, 13.6, 1.84615384615385, 12.7924528302168, 2.4, 23.6923076920955, 2.42857142859162, 4.90909090914286, 3.62499999997362, 11.4193548385381, 4.92307692303284, 17, NA, 16.9090909090909, 20.8333333333333, 0.96969696969697, 8, 11.8333333333333, 10.2352941175069, 5.81818181805867, 6.07228915660947, 39.3333333333333, 4.13333333333333, 9.6969696969697, 11.2, 7.94297352346302, 2.12499999998454, 4.66666666666667, 2.66666666666667, 11.3333333333333, 3.7037037037037, NA, 2.87500000004184, 24.3999999997159, 1.88888888888889, 10.4444444444444, NA, 3.73333333333333, 7.08571428566715, 15.8333333333333, 11.2499999999181, 2.59999999996973, NA, 43.6, 3.24999999997635, 22.9213483149066, NA, 5.22935779808415, 1.85714285711197, 14.3333333333333, 15.4285714286997, 4.363636363544, 1.8571428571583, 7.36363636365585, 6.37499999995362, 51.3333333333333, 3.42857142854862, 1.043478260859, 4.94736842102232, 2.76923076920597, 5.09090909090909, 2.5, 7.49999999994543, 9.71428571436649, 7.25581395352766, 29.8823529407672, 6.62500000009641, NA, 6.12500000008913, 5.59322033900236, 5.12499999996271, 5.45454545460318, 7.00000000005821, 2.44444444444444, 3.05882352936987, 16.9999999998021, 7.71428571434986, 16.8571428568625, NA, 8.83333333333333, 6.77777777777778, 2.78787878787879, 5.06666666666667, 8.83333333333333, 9.17647058829813, 14.1666666666667, 5.5, 36.6666666666667, 4.23529411767606, 7.48387096779814, 5.33333333333333, 2.73244781783923, 2.13333333333333, 2.5, 11.5, 6.42857142862488, 3, 1.79310344827586, 8.00000000006652, 24.8571428567295, NA, 6.09523809523809, 68.5517241373807, 21.2500000003092, 6.21052631575142, 19.2857142858747, 15.1111111111111, 5.5714285714749, 42.6506024095189, 42.615384615003, 4.87499999996453, 13.3333333333333, 11.8709677420246, 8.83116883122224, 6.31578947364551, 9.83333333333333, 1.99999999996674, 7.69230769223881, 4.39999999994878, 17.3076923070723, 8.13333333333333, 16.461538461391, 1.65517241377981, 7.03999999986887, 10.2857142855432, 2.12500000003092, 1.14285714283814, 1.14285714286665, 13.1764705880548, 3.7826086956426, NA, 28.1333333333333, 3.75000000005457, 8.38709677406756, 6.83870967731663, 3.20610687022758, 6.49999999995271, 6.32432432430443, 13.8666666666667, 8.42857142843125, 2.83333333333333, 13.4210526314967, 3.33333333333333, 14.1538461537194, 0.933333333333333, 15.8333333333333, NA, 8.2962962962963, 5.31818181819589, 13.5714285715414, 10.1249999999263, 6.28571428576655, 39.260869565118, 26.6000000006193, 4.00000000005821, NA, 3.74193548389907, 5.35104364326849, 0.749999999994543, 12.0000000001118, 4.30769230765373, 6.57142857148322, 6.00000000002686, 13.3333333333333, 5.33333333333333, 16.1999999998114, 1.87499999998636, 13.1200000001222, 11.0588235294875, 2.0689655172746, 5.57142857140541, 17.1428571429997, 12.8571428572498, 10.4615384617258, 27.2727272730159, 25.5714285716412, 9.25000000013461, 12.3956043957313, 20.8235294114795, 4.54183266930586, 6.25000000009095, 14.000000000326, 1.33333333333333, 8.13333333333333, 7.15789473666668, NA, 62.6666666666667, 18.0000000003224, 0.117647058821918, 6.66666666666667, 43.8571428575075, 8.55172413806835, 5.40540540543942, 7.71428571434986, 11.0000000001601, 18.2857142858663, 52.6451612895318, 26.4, 5.6, 13.1612903226795, 5.93939393939394, 2.48366013073029, 1.53846153844776, 2.36363636363636, 4.14285714289159, 1.33333333333333, 9.23076923093455, NA, 2.83333333333333, 10.9230769229791, 2.19354838706382, 18.6666666666667, 3.57142857136918, 1.6, 8.50000000012369, 9.85714285722482, 11.2500000001637, 1.74999999994907, 6.367346938715, 33, 10.8749999999209, 23.9999999999393, 23.4838709679183, 3.73205741626378, 2.74999999997999, 20.6666666666667, 4.14814814814815, 13.2857142858248, 4.57142857142857, 15.2432432431953, 5.85714285719156, 10, 2.5882352940822, 20.5000000002983, 58.3749999995753, 1.875, 5.08108108101713, 13.5714285715414, 10.8235294116165, 2.66666666666667, 27.4782608692871, 30.9230769228, 17.6, 7.77272727274784, 15.7500000002292, 2.46753246754739, 2.77777777777778, 12.6428571428046, 3.6, 11.2222222222222, 6.79999999992084, 20.705882353083, 2.85714285716662, 14.1818181819683, 3.51515151515152, 11.7777777777778, 57.8888888888889, 3.9999999999709, 5.58620689660779, 15.4285714286997, 11.3548387097627, 1.00000000000832, 23.9999999999393, 25.3333333333333, 20.1250000002929, 4.88372093023256, 13.1111111111111, 2.57812500003752, 2.66666666666667, 12.0000000002794, 7.74999999994361, 23.2857142859079, 10.3333333333333, NA, 4.74999999996544, 12.545454545189, 1.74999999998727, 8, 55.999999999233, 2.12499999998454, 5.05882352944641, 24.5714285716329, 8.21052631573917, 1.99999999998545, 29.17322834643, 30.5060240963)
par(mfrow = c(2, 2))
hist(nph)
hist(dph)
qqnorm(nph)
qqline(nph)
qqnorm(dph)
qqline(dph)

Đây là các bản phân phối:

nhập mô tả hình ảnh ở đây

Vì dữ liệu rõ ràng không được phân phối bình thường, nhiều thử nghiệm thống kê không thể được áp dụng cho dữ liệu này. Nhưng có lẽ tôi có thể chuyển đổi dữ liệu thành một bản phân phối bình thường?

Làm thế nào tôi có thể tìm ra phân phối này là gì?
Và làm thế nào tôi có thể chuyển dữ liệu sang phân phối bình thường?

Mục tiêu là để phân tích phương sai (MANOVA) hoặc một số như vậy (dữ liệu được trình bày ở đây là hai biến phụ thuộc).

Câu trả lời:


9

Các dữ liệu trông giống như có một phân phối theo cấp số nhân . Để chuyển đổi, nhật ký đơn giản dường như hoạt động tốt.

hist(log(dph), freq=FALSE, ylim=c(0, .4))
lines(seq(-6, 6, by=0.01), dnorm(seq(-6, 6, by=0.01), 2, 1), col="red")
qqnorm(log(dph), ylim=c(0, 5))
qqline(log(dph), col="red")

nhập mô tả hình ảnh ở đây


Cảm ơn bạn, @Tim. Bạn có thể gửi mã của bạn? Cốt truyện QQ trông khác khi tôi làm điều đó (ít dốc hơn). Ngoài ra, bạn đã loại trừ một giá trị là -Inf sau khi chuyển đổi?

1
@what Xin lỗi vì điều đó, trong phiên bản đầu tiên tôi đã sử dụng một số tham số xlimvà lạ ylim. Và không - không có gì bị loại trừ.
Tim

Tìm kiếm hướng dẫn về cách diễn giải kết quả từ kiểm tra giả thuyết dữ liệu được chuyển đổi logarit, tôi tình cờ nhận được một nhận xét của whuber (đầu tiên trong câu hỏi này: stats.stackexchange.com/q/20394/14650 ) nói rằng phân phối Poisson được "biểu thị một cách tự nhiên cho đếm dữ liệu "và từ đó tìm thấy bài viết này giải thích lý do: r-bloggers.com/do-not-log-transform-count-data-bitches Bạn nghĩ gì?

1
Đôi khi bạn muốn hoặc cần phải chuyển đổi các biến của mình - đó chắc chắn không phải là cách duy nhất hoặc không phải là cách tiếp cận đặt cược luôn. Nói chung là có, có các bản phân phối được thiết kế cho dữ liệu đếm (ví dụ Poisson) hoặc cho các bản phân phối bị lệch (ví dụ: Hình học, Số mũ), nhưng không phải lúc nào cũng có thể sử dụng chúng. Ví dụ: bạn có thể muốn sử dụng một biến làm biến độc lập trong hồi quy tuyến tính, vì vậy bạn không muốn nó bị lệch và bạn biến đổi nó. Nói chung là tùy tình huống.
Tim

1
@ what Có, tôi đồng ý rằng bạn phải suy nghĩ trong quá trình khởi tạo dữ liệu của mình (~ loại biến). Hãy nhớ rằng phân phối là một ĐÁNH GIÁ mà bạn sẵn sàng thực hiện, điều này quyết định tính hợp lệ của mô hình và kết quả của bạn. Hãy nghĩ về một điều kiện: kết quả là như vậy và như vậy IF (hoặc được đưa ra) giả định này (và những người khác) là đúng. Các thử nghiệm trên mẫu thực tế thường giúp kiểm tra giả định đó, nhưng chúng không biến nó thành TRUE hoặc FALSE. Và đó là lý do tại sao giả sử một cái gì đó đáng tin cậy cho biến của bạn lại rất quan trọng :)
FairMiles

14

YFYΦ

X=Φ1(FY(Y))

X

FX(x)=P(Xx)=P(Φ1(FY(Y))x)=P(YFY1(Φ(x)))=FY(FY1(Φ(x)))=Φ(x).

Yλ

X=Φ1(1eλY),

trông giống như một logarit:

Hàm Gaussianization

Φ1


3
Bạn đã mất tôi tại "Điều này dễ thấy ..." :-) Tôi hiểu y = 3x, nhưng tôi không hiểu F(x) = 3x. Tôi đã có điều này ở trường trong nhiều năm và nghe nó ở trường đại học mỗi ngày, nhưng "chức năng của x" là hoàn toàn vô nghĩa đối với tôi. Tôi không thấy những gì nó liên quan đến thế giới mà tôi sống và trải nghiệm thông qua các giác quan của tôi. Do đó, tôi không hiểu những gì bạn đang nói tôi có thể làm trong "dữ liệu có thể được chuyển đổi thông qua ...". Nhưng +1 vì lòng tốt của bạn trong việc cố gắng giúp tôi. Đó không phải là lỗi của bạn, tôi không thể suy nghĩ trừu tượng.

-2
  1. Làm thế nào tôi có thể tìm ra phân phối này là gì? Tại đây bạn có thể sử dụng một số kiểm tra thống kê từ gói R fitdistrplus. Từ gói Bạn sẽ tìm thấy vật liệu phù hợp, ví dụ AIC, BIC, v.v ... Sự phù hợp của phân phối 'gamma hoặc mor disrtribution như "bình thường". Dưới đây là các phương pháp.

    • ƯỚC LƯỢNG KHẢ NĂNG TỐI ĐA
    • DỰ ÁN MATCHING MOMENT
    • ƯU ĐIỂM SỐ LƯỢNG
    • TỐI ƯU ƯU ĐÃI TỐI THIỂU TỐI THIỂU (Thống kê mức độ phù hợp và tiêu chí Mức độ phù hợp)

Sau đó, cuối cùng bạn sẽ tìm thấy trong số một số mô hình lý thuyết mô hình tốt nhất giống với dữ liệu quan sát của bạn.

  1. Và làm thế nào tôi có thể chuyển dữ liệu sang phân phối bình thường? Tại đây bạn có thể sử dụng Box Cox Transfom

    Box_Cox_tran=function(x, lambda, jacobian.adjusted = FALSE) 
    {
      bc1 <- function(x, lambda) 
      {
        if (any(x[!is.na(x)] <= 0)) 
          stop("First argument must be strictly positive.")
        z <- if (abs(lambda) <= 1e-06) 
          log(x)
        else ((x^lambda) - 1)/lambda
        if (jacobian.adjusted == TRUE) {
          z * (exp(mean(log(x), na.rm = TRUE)))^(1 - lambda)
        }
        else z
      }
      out <- x
      out <- if (is.matrix(out) | is.data.frame(out)) {
        if (is.null(colnames(out))) 
          colnames(out) <- paste("Z", 1:dim(out)[2], sep = "")
        for (j in 1:ncol(out)) {
          out[, j] <- bc1(out[, j], lambda[j])
        }
        colnames(out) <- paste(colnames(out), round(lambda, 2), 
                               sep = "^")
        out
      }
      else bc1(out, lambda)
      out
    }
    

Đây là sơ đồ làm việc của tôi:

# ---------------------------------------------------------------------------------------------------------------------------
# Objective three starts Here
# (3)= Bivariate modelling of annual maxima using traditional approach 
# a)    First transform onbserved seasonal maxima into normal distribution using Box-Cox Transformations(x to z)
# b)    Finaly, Estimate Pearson coefficient using traditional bivariate normal distribution
# ---------------------------------------------------------------------------------------------------------------------------
rm(list=ls())
Sys.setenv(LANGUAGE="en")  # to set languege from Polish to English
setwd("C:/Users/sdebele/Desktop/From_oldcomp/Old_Computer/Seasonal_APP/Data/Data_Winter&Summer")
# Loading the required package here
library(MASS)
library(geoR)
require(scales)
require(plyr)
require(car)
library(ggplot2)
require(alr3)
library(ggplot2)
library(reshape2)
library(nortest)
require(AID)
require(distr)
require(fBasics)
# -----------------------------------------------------------------------------------------------------------------------------
# Here the Box-Cox Transformations equations
# x(lambda)=x^lamda-1/lambda, if lambda is not zero
# else log(x) if lambda=0
#--------------------------------------------------------------------------------------------------------------------------------
# Here is the data for six guaging stations of dependant ( 51.12% to 89.85%)
filenames=c("ZAPALOW.txt","GORLICZYNA.txt","SARZYNA.txt","OSUCHY.txt","HARASIUKI.txt","RUDJASTKOWSKA.txt")
# ---------------------------------------------------------------------------------------------------------------------------
# (1)= For ZAPALOW hydrological guaging stations starts here
# --------------------------------------------------------------------------------------------------------------------------------
ZAPALOW=read.table(file=filenames[1],head=T,sep="\t")
newZAPALOW <- na.omit(ZAPALOW) # to eliminte the missing value from the data sets 
Years=newZAPALOW$Year
    Winter=newZAPALOW$Winter
Summer=newZAPALOW$Sumer
    source("Box_Cox_Transfom.R") # R_script containing the tranformation equations 
    # estimation of lambda using AID R package 
    # boxcoxnc(Sumer, method="ac", lam=seq(-2,2,0.01), plotit=TRUE, rep=30, p.method="BY")
    # boxcoxnc(Winter, method="ac", lam=seq(-2,2,0.01), plotit=TRUE, rep=30, p.method="BY")
    Trans_Win=boxcoxnc(Winter)
    Trans_Sum=boxcoxnc(Summer)
    Winter_trans=Box_Cox_tran(Winter,Trans_Win$result[1,1],jacobian.adjusted=T)
Summer_trans=Box_Cox_tran(Summer,Trans_Sum$result[1,1],jacobian.adjusted=T)
    newZAPALOW[,4]=Winter_trans
    newZAPALOW[,5]=Summer_trans
    colnames(newZAPALOW)= c("Year","Winter " ,"Summer","Winter_Trans","Summer_Trans")
    par(mfrow=c(2,2))
    par("lwd"=2)
    ## Plot histogram with overlayed normal distribution.
    hist(newZAPALOW[,4],main="",xlab="Discharge",freq=FALSE,col="lightblue")
    curve(dnorm(x,mean=mean(newZAPALOW[,4]),sd=sd(newZAPALOW[,4])), add=TRUE, col="darkred",lwd=2)
    qq.plot(newZAPALOW[,4], dist= "norm", col=palette()[1], ylab="Sample Quantiles",
            main="Normal Probability Plot", pch=19)
    #b <- mydata[,c(2,3)] # select interesting columns
    result <- shapiro.test(newZAPALOW[,4]) # checking for normality test 
    result$p.value
ad.test(newZAPALOW[,4]) # checking for normality test 
## Plot histogram with overlayed normal distribution.
hist(newZAPALOW[,5],main="",xlab="Discharge",freq=FALSE,col="lightblue")
curve(dnorm(x,mean=mean(newZAPALOW[,5]),sd=sd(newZAPALOW[,5])), add=TRUE, col="darkred",lwd=2)
qq.plot(newZAPALOW[,5], dist= "norm", col=palette()[1], ylab="Sample Quantiles",
        main="Normal Probability Plot", pch=19)
result <- shapiro.test(newZAPALOW[,5]) # checking for normality test 
result$p.value
ad.test(newZAPALOW[,5]) # checking for normality test 
write.table(newZAPALOW, "newZAPALOW_trans.txt", sep="\t")
For sure this will be helpfull for you.

Hãy cố gắng chỉnh sửa bài viết của bạn để nó dễ đọc hơn. Mã Box-Cox của bạn dường như có lỗi (nếu các vòng lặp khác không được đóng đúng cách, v.v.), vì vậy vui lòng sửa nó.
Tim

3
@Tim khi ở trong một danh sách, chúng ta cần thêm bốn khoảng trắng ở đầu mỗi dòng để nó được định dạng dưới dạng mã.
Shadow Wizard là Ear For You
Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.