Sau khi thực hiện phân tích thành phần chính (PCA), tôi muốn chiếu một vectơ mới lên không gian PCA (tức là tìm tọa độ của nó trong hệ tọa độ PCA).
Tôi đã tính PCA bằng ngôn ngữ R bằng cách sử dụng prcomp
. Bây giờ tôi có thể nhân vectơ của mình với ma trận xoay PCA. Các thành phần chính trong ma trận này nên được sắp xếp theo hàng hoặc cột?
r
pca
r
variance
heteroscedasticity
misspecification
distributions
time-series
data-visualization
modeling
histogram
kolmogorov-smirnov
negative-binomial
likelihood-ratio
econometrics
panel-data
categorical-data
scales
survey
distributions
pdf
histogram
correlation
algorithms
r
gpu
parallel-computing
approximation
mean
median
references
sample-size
normality-assumption
central-limit-theorem
rule-of-thumb
confidence-interval
estimation
mixed-model
psychometrics
random-effects-model
hypothesis-testing
sample-size
dataset
large-data
regression
standard-deviation
variance
approximation
hypothesis-testing
variance
central-limit-theorem
kernel-trick
kernel-smoothing
error
sampling
hypothesis-testing
normality-assumption
philosophical
confidence-interval
modeling
model-selection
experiment-design
hypothesis-testing
statistical-significance
power
asymptotics
information-retrieval
anova
multiple-comparisons
ancova
classification
clustering
factor-analysis
psychometrics
r
sampling
expectation-maximization
markov-process
r
data-visualization
correlation
regression
statistical-significance
degrees-of-freedom
experiment-design
r
regression
curve-fitting
change-point
loess
machine-learning
classification
self-study
monte-carlo
markov-process
references
mathematical-statistics
data-visualization
python
cart
boosting
regression
classification
robust
cart
survey
binomial
psychometrics
likert
psychology
asymptotics
multinomial