1
Xây dựng phân phối Dirichlet với phân phối Gamma
Đặt là các biến ngẫu nhiên độc lập lẫn nhau, mỗi biến có phân phối gamma với các tham số cho thấy , có một phép bổ trợ chung làX1,…,Xk+1X1,…,Xk+1X_1,\dots,X_{k+1}αi,i=1,2,…,k+1αi,i=1,2,…,k+1\alpha_i,i=1,2,\dots,k+1Yi=XiX1+⋯+Xk+1,i=1,…,kYi=XiX1+⋯+Xk+1,i=1,…,kY_i=\frac{X_i}{X_1+\cdots+X_{k+1}},i=1,\dots,kDirichlet(α1,α2,…,αk;αk+1)Dirichlet(α1,α2,…,αk;αk+1)\text{Dirichlet}(\alpha_1,\alpha_2,\dots,\alpha_k;\alpha_{k+1}) Pdf chung của Sau đó tìm khớp pdf của Tôi không thể tìm thấy jacobian tức là(X1,…,Xk+1)=e−∑k+1i=1xixα1−11…xαk+1−1k+1Γ(α1)Γ(α2)…Γ(αk+1)(X1,…,Xk+1)=e−∑i=1k+1xix1α1−1…xk+1αk+1−1Γ(α1)Γ(α2)…Γ(αk+1)(X_1,\dots,X_{k+1})=\frac{e^{-\sum_{i=1}^{k+1}x_i}x_1^{\alpha_1-1}\dots x_{k+1}^{\alpha_{k+1}-1}}{\Gamma(\alpha_1)\Gamma(\alpha_2)\dots \Gamma(\alpha_{k+1})}(Y1,…,Yk+1)(Y1,…,Yk+1)(Y_1,\dots,Y_{k+1})J(x1,…,xk+1y1,…,yk+1)J(x1,…,xk+1y1,…,yk+1)J(\frac{x_1,\dots,x_{k+1}}{y_1,\dots,y_{k+1}})