Câu hỏi được gắn thẻ «cross-validation»

Liên tục giữ lại các tập hợp con của dữ liệu trong quá trình điều chỉnh mô hình để định lượng hiệu suất mô hình trên các tập hợp dữ liệu bị giữ lại.







2
Cách sử dụng các chức năng xác thực chéo của scikit-learn trên các trình phân loại đa nhãn
Tôi đang kiểm tra các trình phân loại khác nhau trên một tập dữ liệu có 5 lớp và mỗi trường hợp có thể thuộc về một hoặc nhiều lớp trong số đó, vì vậy, tôi đang sử dụng các trình phân loại đa nhãn của scikit-learn, cụ thể sklearn.multiclass.OneVsRestClassifier. …




4
Giá trị chính xác cho độ chính xác và thu hồi trong trường hợp cạnh là gì?
Độ chính xác được định nghĩa là: p = true positives / (true positives + false positives) Có đúng không, như true positivesvà false positivescách tiếp cận 0, độ chính xác tiếp cận 1? Câu hỏi tương tự để nhớ lại: r = true positives / (true positives + false …
20 precision-recall  data-visualization  logarithm  references  r  networks  data-visualization  standard-deviation  probability  binomial  negative-binomial  r  categorical-data  aggregation  plyr  survival  python  regression  r  t-test  bayesian  logistic  data-transformation  confidence-interval  t-test  interpretation  distributions  data-visualization  pca  genetics  r  finance  maximum  probability  standard-deviation  probability  r  information-theory  references  computational-statistics  computing  references  engineering-statistics  t-test  hypothesis-testing  independence  definition  r  censoring  negative-binomial  poisson-distribution  variance  mixed-model  correlation  intraclass-correlation  aggregation  interpretation  effect-size  hypothesis-testing  goodness-of-fit  normality-assumption  small-sample  distributions  regression  normality-assumption  t-test  anova  confidence-interval  z-statistic  finance  hypothesis-testing  mean  model-selection  information-geometry  bayesian  frequentist  terminology  type-i-and-ii-errors  cross-validation  smoothing  splines  data-transformation  normality-assumption  variance-stabilizing  r  spss  stata  python  correlation  logistic  logit  link-function  regression  predictor  pca  factor-analysis  r  bayesian  maximum-likelihood  mcmc  conditional-probability  statistical-significance  chi-squared  proportion  estimation  error  shrinkage  application  steins-phenomenon 


2
Có chức năng đào tạo caret cho glmnet xác thực chéo cho cả alpha và lambda?
Liệu caretgói R có xác nhận chéo trên cả hai alphavà lambdacho glmnetmô hình không? Chạy mã này, eGrid <- expand.grid(.alpha = (1:10) * 0.1, .lambda = (1:10) * 0.1) Control <- trainControl(method = "repeatedcv",repeats = 3,verboseIter =TRUE) netFit <- train(x =train_features, y = y_train, method = "glmnet", tuneGrid = …


1
Lợi ích của việc phân tầng so với lấy mẫu ngẫu nhiên để tạo dữ liệu đào tạo trong phân loại
Tôi muốn biết nếu có bất kỳ / một số lợi thế của việc sử dụng lấy mẫu phân tầng thay vì lấy mẫu ngẫu nhiên, khi tách tập dữ liệu gốc thành tập huấn luyện và kiểm tra để phân loại. Ngoài ra, lấy mẫu phân tầng có đưa …

Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.