Câu hỏi được gắn thẻ «random-variable»

Một biến ngẫu nhiên hoặc biến ngẫu nhiên là một giá trị có thể thay đổi cơ hội (nghĩa là tính ngẫu nhiên theo nghĩa toán học).






3
Phân phối
Giả sử có phân phối beta Beta và theo một bình phương chi với độ. Ngoài ra, chúng tôi giả định rằng và là độc lập.XXX(1,K−1)(1,K−1)(1,K-1)YYY2K2K2KXXXYYY Phân phối của sản phẩmZ=XYZ=XYZ=XY . Cập nhật Nỗ lực của tôi: fZ=∫y=+∞y=−∞1|y|fY(y)fX(zy)dy=∫+∞01B(1,K−1)2KΓ(K)1yyK−1e−y/2(1−z/y)K−2dy=1B(1,K−1)2KΓ(K)∫+∞0e−y/2(y−z)K−2dy=1B(1,K−1)2KΓ(K)[−2K−1e−z/2Γ(K−1,y−z2)]∞0=2K−1B(1,K−1)2KΓ(K)e−z/2Γ(K−1,−z/2)fZ=∫y=−∞y=+∞1|y|fY(y)fX(zy)dy=∫0+∞1B(1,K−1)2KΓ(K)1yyK−1e−y/2(1−z/y)K−2dy=1B(1,K−1)2KΓ(K)∫0+∞e−y/2(y−z)K−2dy=1B(1,K−1)2KΓ(K)[−2K−1e−z/2Γ(K−1,y−z2)]0∞=2K−1B(1,K−1)2KΓ(K)e−z/2Γ(K−1,−z/2)\begin{align} f_Z &= \int_{y=-\infty}^{y=+\infty}\frac{1}{|y|}f_Y(y) f_X \left (\frac{z}{y} \right ) dy \\ &= …




3




1
Hiển thị là độc lập nếu và khi
Đặt là các biến ngẫu nhiên độc lập.Xi∼Gamma(α,pi),i=1,2,...,n+1Xi∼Gamma(α,pi),i=1,2,...,n+1X_i\sim\text{Gamma}(\alpha,p_i),i=1,2,...,n+1 Xác định và . Sau đó cho thấy được phân phối độc lập.Z1=∑n+1i=1XiZ1=∑i=1n+1XiZ_1=\sum_{i=1}^{n+1}X_iZi=Xi∑ij=1Xj,i=2,3,...,n+1Zi=Xi∑j=1iXj,i=2,3,...,n+1Z_i=\frac{X_i}{\sum_{j=1}^iX_j},\quad i=2,3,...,n+1Z1,Z2,...,Zn+1Z1,Z2,...,Zn+1Z_1,Z_2,...,Z_{n+1} Mật độ chung của được cho bởi(X1,...,Xn+1)(X1,...,Xn+1)(X_1,...,X_{n+1}) fX(x1,...,xn+1)=[α∑n+1i=1pi∏n+1i=1Γ(pi)exp(−α∑i=1n+1xi)∏i=1n+1xpi−1i]Ixi>0,α>0,pi>0fX(x1,...,xn+1)=[α∑i=1n+1pi∏i=1n+1Γ(pi)exp⁡(−α∑i=1n+1xi)∏i=1n+1xipi−1]Ixi>0,α>0,pi>0f_{\bf X}(x_1,...,x_{n+1})=\left[\frac{\alpha^{\sum_{i=1}^{n+1}p_i}}{\prod_{i=1}^{n+1}\Gamma(p_i)}\exp\left(-\alpha\sum_{i=1}^{n+1}x_i\right)\prod_{i=1}^{n+1}x_i^{p_i-1}\right]\mathbf I_{x_i>0}\quad,\alpha>0,p_i>0 Chúng tôi biến đổi sao choX=(X1,⋯,Xn+1)↦Z=(Z1,⋯,Zn+1)X=(X1,⋯,Xn+1)↦Z=(Z1,⋯,Zn+1)\mathbf X=(X_1,\cdots,X_{n+1})\mapsto\mathbf Z=(Z_1,\cdots,Z_{n+1}) Z1=∑n+1i=1XiZ1=∑i=1n+1XiZ_1=\sum_{i=1}^{n+1}X_i vàZi=Xi∑ij=1Xj,i=2,3,...,n+1Zi=Xi∑j=1iXj,i=2,3,...,n+1Z_i=\frac{X_i}{\sum_{j=1}^iX_j},\quad i=2,3,...,n+1 ⟹xn+1=z1zn+1,⟹xn+1=z1zn+1,\implies x_{n+1}=z_1z_{n+1}, xn=z1zn(1−zn+1),xn=z1zn(1−zn+1),\qquad x_n=z_1z_n(1-z_{n+1}), xn−1=z1zn−1(1−zn)(1−xn+1),xn−1=z1zn−1(1−zn)(1−xn+1),\qquad x_{n-1}=z_1z_{n-1}(1-z_n)(1-x_{n+1}), ⋮⋮\qquad\vdots …

1
Giá trị trung bình và phương sai của trung vị của một tập hợp các biến ngẫu nhiên bình thường iid là gì?
Để cho X1X1X_1, ... XnXnX_n được phân phối độc lập các biến ngẫu nhiên với N(μ,σ2)N(μ,σ2)N(\mu, \sigma^2) Thật dễ dàng để chỉ ra rằng mẫu có nghĩa là X¯=1n∑ni=0XiX¯=1n∑i=0nXi\bar{X} = \frac{1}{n}\sum^n_{i = 0}{X_i} là một biến ngẫu nhiên với N(μ,σ2n)N(μ,σ2n)N(\mu, \frac{\sigma^2}{n}). Tuy nhiên, tôi đang gặp khó khăn trong việc …

Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.