Câu hỏi được gắn thẻ «pca»

Phân tích thành phần chính (PCA) là một kỹ thuật giảm kích thước tuyến tính. Nó giảm một tập dữ liệu đa biến thành một tập hợp nhỏ hơn các biến được xây dựng bảo tồn càng nhiều thông tin (càng nhiều phương sai) càng tốt. Các biến này, được gọi là các thành phần chính, là sự kết hợp tuyến tính của các biến đầu vào.

1
Tại sao Anova () và drop1 () cung cấp các câu trả lời khác nhau cho GLMM?
Tôi có một GLMM có dạng: lmer(present? ~ factor1 + factor2 + continuous + factor1*continuous + (1 | factor3), family=binomial) Khi tôi sử dụng drop1(model, test="Chi"), tôi nhận được kết quả khác với nếu tôi sử dụng Anova(model, type="III")từ gói xe hơi hoặc summary(model). Hai cái sau cho cùng một …
10 r  anova  glmm  r  mixed-model  bootstrap  sample-size  cross-validation  roc  auc  sampling  stratification  random-allocation  logistic  stata  interpretation  proportion  r  regression  multiple-regression  linear-model  lm  r  cross-validation  cart  rpart  logistic  generalized-linear-model  econometrics  experiment-design  causality  instrumental-variables  random-allocation  predictive-models  data-mining  estimation  contingency-tables  epidemiology  standard-deviation  mean  ancova  psychology  statistical-significance  cross-validation  synthetic-data  poisson-distribution  negative-binomial  bioinformatics  sequence-analysis  distributions  binomial  classification  k-means  distance  unsupervised-learning  euclidean  correlation  chi-squared  spearman-rho  forecasting  excel  exponential-smoothing  binomial  sample-size  r  change-point  wilcoxon-signed-rank  ranks  clustering  matlab  covariance  covariance-matrix  normal-distribution  simulation  random-generation  bivariate  standardization  confounding  z-statistic  forecasting  arima  minitab  poisson-distribution  negative-binomial  poisson-regression  overdispersion  probability  self-study  markov-process  estimation  maximum-likelihood  classification  pca  group-differences  chi-squared  survival  missing-data  contingency-tables  anova  proportion 

1
Sử dụng kurtosis để đánh giá tầm quan trọng của các thành phần từ phân tích thành phần độc lập
Trong PCA eigenvalues ​​xác định thứ tự của các thành phần. Trong ICA tôi đang sử dụng kurtosis để có được thứ tự. Một số phương pháp được chấp nhận để đánh giá số lượng, (cho tôi có thứ tự) của các thành phần là khác biệt so với kiến …


1
Một bài báo đề cập đến một mô phỏng của Monte Monte Carlo để xác định số lượng các thành phần chính làm thế nào nó hoạt động?
Tôi đang thực hiện phân tích Matlab trên dữ liệu MRI nơi tôi đã thực hiện PCA trên ma trận có kích thước 10304x236 trong đó 10304 là số lượng voxels (nghĩ về chúng như pixel) và 236 là số lượng thời gian. PCA cung cấp cho tôi 236 Eigenvalues …



4
Mô hình lịch sử sự kiện rời rạc (Survival) trong R
Tôi đang cố gắng để phù hợp với một mô hình thời gian rời rạc trong R, nhưng tôi không chắc làm thế nào để làm điều đó. Tôi đã đọc rằng bạn có thể sắp xếp biến phụ thuộc theo các hàng khác nhau, mỗi hàng cho mỗi lần …
10 r  survival  pca  sas  matlab  neural-networks  r  logistic  spatial  spatial-interaction-model  r  time-series  econometrics  var  statistical-significance  t-test  cross-validation  sample-size  r  regression  optimization  least-squares  constrained-regression  nonparametric  ordinal-data  wilcoxon-signed-rank  references  neural-networks  jags  bugs  hierarchical-bayesian  gaussian-mixture  r  regression  svm  predictive-models  libsvm  scikit-learn  probability  self-study  stata  sample-size  spss  wilcoxon-mann-whitney  survey  ordinal-data  likert  group-differences  r  regression  anova  mathematical-statistics  normal-distribution  random-generation  truncation  repeated-measures  variance  variability  distributions  random-generation  uniform  regression  r  generalized-linear-model  goodness-of-fit  data-visualization  r  time-series  arima  autoregressive  confidence-interval  r  time-series  arima  autocorrelation  seasonality  hypothesis-testing  bayesian  frequentist  uninformative-prior  correlation  matlab  cross-correlation 



2
Ví dụ PCA tốt cho việc giảng dạy
Tôi đang dạy đại số tuyến tính cho một lớp kỹ sư, nhà khoa học xã hội và lập trình viên máy tính. Chúng tôi vừa mới thực hiện phân tách giá trị số ít và chúng tôi có thêm một ngày, vì vậy tôi nghĩ tôi đã nói về …
10 pca  dataset  teaching 






Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.