Câu hỏi được gắn thẻ «estimation»

Thẻ này quá chung chung; vui lòng cung cấp một thẻ cụ thể hơn. Đối với các câu hỏi về các thuộc tính của công cụ ước tính cụ thể, thay vào đó, hãy sử dụng thẻ [công cụ ước tính].



2
Xu hướng ước tính thời điểm phân phối lognatural
Tôi đang làm một số thí nghiệm số mà bao gồm trong lấy mẫu một bản phân phối lognormal X∼LN(μ,σ)X∼LN(μ,σ)X\sim\mathcal{LN}(\mu, \sigma) , và cố gắng để ước lượng những khoảnh khắc bằng hai phương pháp:E[Xn]E[Xn]\mathbb{E}[X^n] Nhìn vào giá trị trung bình mẫu củaXnXnX^n Ước tính và bằng cách sử dụng …






2
Làm thế nào để lấy được hàm khả năng phân phối nhị thức cho ước lượng tham số?
Theo Xác suất và Thống kê dành cho Kỹ sư của Miller và Freund, 8ed (tr.217-218), chức năng khả năng được tối đa hóa để phân phối nhị thức (thử nghiệm Bernoulli) được đưa ra là L(p)=∏ni=1pxi(1−p)1−xiL(p)=∏i=1npxi(1−p)1−xiL(p) = \prod_{i=1}^np^{x_i}(1-p)^{1-x_i} Làm thế nào để đến phương trình này? Nó có vẻ …


3
Ước lượng không thiên vị của ma trận hiệp phương sai cho dữ liệu bị kiểm duyệt nhân
Các phân tích hóa học của các mẫu môi trường thường được kiểm duyệt dưới đây ở các giới hạn báo cáo hoặc các giới hạn phát hiện / định lượng khác nhau. Cái sau có thể thay đổi, thường là tỷ lệ với các giá trị của các biến …


4
Làm thế nào để chiếu một vectơ mới lên không gian PCA?
Sau khi thực hiện phân tích thành phần chính (PCA), tôi muốn chiếu một vectơ mới lên không gian PCA (tức là tìm tọa độ của nó trong hệ tọa độ PCA). Tôi đã tính PCA bằng ngôn ngữ R bằng cách sử dụng prcomp. Bây giờ tôi có thể …
21 r  pca  r  variance  heteroscedasticity  misspecification  distributions  time-series  data-visualization  modeling  histogram  kolmogorov-smirnov  negative-binomial  likelihood-ratio  econometrics  panel-data  categorical-data  scales  survey  distributions  pdf  histogram  correlation  algorithms  r  gpu  parallel-computing  approximation  mean  median  references  sample-size  normality-assumption  central-limit-theorem  rule-of-thumb  confidence-interval  estimation  mixed-model  psychometrics  random-effects-model  hypothesis-testing  sample-size  dataset  large-data  regression  standard-deviation  variance  approximation  hypothesis-testing  variance  central-limit-theorem  kernel-trick  kernel-smoothing  error  sampling  hypothesis-testing  normality-assumption  philosophical  confidence-interval  modeling  model-selection  experiment-design  hypothesis-testing  statistical-significance  power  asymptotics  information-retrieval  anova  multiple-comparisons  ancova  classification  clustering  factor-analysis  psychometrics  r  sampling  expectation-maximization  markov-process  r  data-visualization  correlation  regression  statistical-significance  degrees-of-freedom  experiment-design  r  regression  curve-fitting  change-point  loess  machine-learning  classification  self-study  monte-carlo  markov-process  references  mathematical-statistics  data-visualization  python  cart  boosting  regression  classification  robust  cart  survey  binomial  psychometrics  likert  psychology  asymptotics  multinomial 

4
Giá trị chính xác cho độ chính xác và thu hồi trong trường hợp cạnh là gì?
Độ chính xác được định nghĩa là: p = true positives / (true positives + false positives) Có đúng không, như true positivesvà false positivescách tiếp cận 0, độ chính xác tiếp cận 1? Câu hỏi tương tự để nhớ lại: r = true positives / (true positives + false …
20 precision-recall  data-visualization  logarithm  references  r  networks  data-visualization  standard-deviation  probability  binomial  negative-binomial  r  categorical-data  aggregation  plyr  survival  python  regression  r  t-test  bayesian  logistic  data-transformation  confidence-interval  t-test  interpretation  distributions  data-visualization  pca  genetics  r  finance  maximum  probability  standard-deviation  probability  r  information-theory  references  computational-statistics  computing  references  engineering-statistics  t-test  hypothesis-testing  independence  definition  r  censoring  negative-binomial  poisson-distribution  variance  mixed-model  correlation  intraclass-correlation  aggregation  interpretation  effect-size  hypothesis-testing  goodness-of-fit  normality-assumption  small-sample  distributions  regression  normality-assumption  t-test  anova  confidence-interval  z-statistic  finance  hypothesis-testing  mean  model-selection  information-geometry  bayesian  frequentist  terminology  type-i-and-ii-errors  cross-validation  smoothing  splines  data-transformation  normality-assumption  variance-stabilizing  r  spss  stata  python  correlation  logistic  logit  link-function  regression  predictor  pca  factor-analysis  r  bayesian  maximum-likelihood  mcmc  conditional-probability  statistical-significance  chi-squared  proportion  estimation  error  shrinkage  application  steins-phenomenon 

1
Tại sao công cụ ước tính James-Stein được gọi là công cụ ước tính co ngót của hồi giáo?
Tôi đã đọc về công cụ ước tính James-Stein. Nó được định nghĩa, trong ghi chú này , như θ^=(1−p−2∥X∥2)Xθ^=(1−p−2‖X‖2)X \hat{\theta}=\left(1 - \frac{p-2}{\|X\|^2}\right)X Tôi đã đọc bằng chứng nhưng tôi không hiểu tuyên bố sau: Về mặt hình học, công cụ ước tính James Gian Stein thu nhỏ từng thành …

Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.