Câu hỏi được gắn thẻ «self-study»

Một bài tập thông thường từ sách giáo khoa, khóa học hoặc bài kiểm tra được sử dụng cho một lớp học hoặc tự học. Chính sách của cộng đồng này là "cung cấp gợi ý hữu ích" cho những câu hỏi như vậy thay vì câu trả lời hoàn chỉnh.


1
Một bằng chứng cho sự ổn định của AR (2)
Hãy xem xét một bình làm trung tâm AR (2) quá trình Xt= ϕ1Xt - 1+ φ2Xt - 2+ εtXt= =φ1Xt-1+φ2Xt-2+εtX_t=\phi_1X_{t-1}+\phi_2X_{t-2}+\epsilon_t nơi εtεt\epsilon_t là tiêu chuẩn trắng quá trình tiếng ồn. Chỉ vì lợi ích của sự đơn giản hãy để tôi gọi φ1= bφ1= =b\phi_1=b và . Tập trung …

2
Làm cách nào để tính toán phương sai của công cụ ước tính OLS
Tôi biết rằng và đây là khoảng cách tôi có được khi tính toán phương sai:β0^=y¯−β1^x¯β0^=y¯−β1^x¯\hat{\beta_0}=\bar{y}-\hat{\beta_1}\bar{x} Var(β0^)=Var(y¯−β1^x¯)=Var((−x¯)β1^+y¯)=Var((−x¯)β1^)+Var(y¯)=(−x¯)2Var(β1^)+0=(x¯)2Var(β1^)+0=σ2(x¯)2∑i=1n(xi−x¯)2Var(β0^)=Var(y¯−β1^x¯)=Var((−x¯)β1^+y¯)=Var((−x¯)β1^)+Var(y¯)=(−x¯)2Var(β1^)+0=(x¯)2Var(β1^)+0=σ2(x¯)2∑i=1n(xi−x¯)2\begin{align*} Var(\hat{\beta_0}) &= Var(\bar{y} - \hat{\beta_1}\bar{x}) \\ &= Var((-\bar{x})\hat{\beta_1}+\bar{y}) \\ &= Var((-\bar{x})\hat{\beta_1})+Var(\bar{y}) \\ &= (-\bar{x})^2 Var(\hat{\beta_1}) + 0 \\ &= (\bar{x})^2 Var(\hat{\beta_1}) + 0 \\ &= \frac{\sigma^2 (\bar{x})^2}{\displaystyle\sum\limits_{i=1}^n (x_i - \bar{x})^2} \end{align*} nhưng đó …




4
Giá trị kỳ vọng của trung bình mẫu cho trung bình mẫu
Đặt biểu thị trung vị và để biểu thị giá trị trung bình của một mẫu ngẫu nhiên có kích thước từ một phân phối là . Làm cách nào tôi có thể tính ?YYYˉXX¯\bar{X}n=2k+1n=2k+1n=2k+1N(μ,σ2)N(μ,σ2)N(\mu,\sigma^2)E(Y|ˉX=ˉx)E(Y|X¯=x¯)E(Y|\bar{X}=\bar{x}) Theo trực giác, vì giả định quy tắc, sẽ hợp lý khi cho rằng và …


1
Xây dựng phân phối Dirichlet với phân phối Gamma
Đặt là các biến ngẫu nhiên độc lập lẫn nhau, mỗi biến có phân phối gamma với các tham số cho thấy , có một phép bổ trợ chung làX1,…,Xk+1X1,…,Xk+1X_1,\dots,X_{k+1}αi,i=1,2,…,k+1αi,i=1,2,…,k+1\alpha_i,i=1,2,\dots,k+1Yi=XiX1+⋯+Xk+1,i=1,…,kYi=XiX1+⋯+Xk+1,i=1,…,kY_i=\frac{X_i}{X_1+\cdots+X_{k+1}},i=1,\dots,kDirichlet(α1,α2,…,αk;αk+1)Dirichlet(α1,α2,…,αk;αk+1)\text{Dirichlet}(\alpha_1,\alpha_2,\dots,\alpha_k;\alpha_{k+1}) Pdf chung của Sau đó tìm khớp pdf của Tôi không thể tìm thấy jacobian tức là(X1,…,Xk+1)=e−∑k+1i=1xixα1−11…xαk+1−1k+1Γ(α1)Γ(α2)…Γ(αk+1)(X1,…,Xk+1)=e−∑i=1k+1xix1α1−1…xk+1αk+1−1Γ(α1)Γ(α2)…Γ(αk+1)(X_1,\dots,X_{k+1})=\frac{e^{-\sum_{i=1}^{k+1}x_i}x_1^{\alpha_1-1}\dots x_{k+1}^{\alpha_{k+1}-1}}{\Gamma(\alpha_1)\Gamma(\alpha_2)\dots \Gamma(\alpha_{k+1})}(Y1,…,Yk+1)(Y1,…,Yk+1)(Y_1,\dots,Y_{k+1})J(x1,…,xk+1y1,…,yk+1)J(x1,…,xk+1y1,…,yk+1)J(\frac{x_1,\dots,x_{k+1}}{y_1,\dots,y_{k+1}})




2
Các pdf của
Giả sử X1,X2,...,XnX1,X2,...,XnX_1, X_2,...,X_n là iid từ N(μ,σ2)N(μ,σ2)N(\mu,\sigma^2) với biết μ∈Rμ∈R\mu \in \mathcal R và σ2>0σ2>0\sigma^2>0 Hãy Z=X1−X¯S,Z=X1−X¯S,Z=\frac{X_1-\bar{X}}{S},S là độ lệch chuẩn ở đây. Có thể thấy rằng ZZZ có Lebesgue pdf f(z)=n−−√Γ(n−12)π−−√(n−1)Γ(n−22)[1−nz2(n−1)2]n/2−2I(0,(n−1)/n√)(|Z|)f(z)=nΓ(n−12)π(n−1)Γ(n−22)[1−nz2(n−1)2]n/2−2I(0,(n−1)/n)(|Z|)f(z)=\frac{\sqrt{n} \Gamma\left(\frac{n-1}{2}\right)}{\sqrt{\pi}(n-1)\Gamma\left(\frac{n-2}{2}\right)}\left[1-\frac{nz^2}{(n-1)^2}\right]^{n/2-2}I_{(0,(n-1)/\sqrt{n})}(|Z|) Câu hỏi của tôi là làm thế nào để có được pdf này? Câu hỏi đặt …
15 self-study  umvue 


1
Trực giác đằng sau các mẫu trao đổi theo giả thuyết null là gì?
Các thử nghiệm hoán vị (còn gọi là thử nghiệm ngẫu nhiên, thử nghiệm ngẫu nhiên lại hoặc thử nghiệm chính xác) rất hữu ích và có ích khi giả định phân phối bình thường theo yêu cầu, t-testkhông được đáp ứng và khi chuyển đổi các giá trị theo …
15 hypothesis-testing  permutation-test  exchangeability  r  statistical-significance  loess  data-visualization  normal-distribution  pdf  ggplot2  kernel-smoothing  probability  self-study  expected-value  normal-distribution  prior  correlation  time-series  regression  heteroscedasticity  estimation  estimators  fisher-information  data-visualization  repeated-measures  binary-data  panel-data  mathematical-statistics  coefficient-of-variation  normal-distribution  order-statistics  regression  machine-learning  one-class  probability  estimators  forecasting  prediction  validation  finance  measurement-error  variance  mean  spatial  monte-carlo  data-visualization  boxplot  sampling  uniform  chi-squared  goodness-of-fit  probability  mixture  theory  gaussian-mixture  regression  statistical-significance  p-value  bootstrap  regression  multicollinearity  correlation  r  poisson-distribution  survival  regression  categorical-data  ordinal-data  ordered-logit  regression  interaction  time-series  machine-learning  forecasting  cross-validation  binomial  multiple-comparisons  simulation  false-discovery-rate  r  clustering  frequency  wilcoxon-mann-whitney  wilcoxon-signed-rank  r  svm  t-test  missing-data  excel  r  numerical-integration  r  random-variable  lme4-nlme  mixed-model  weighted-regression  power-law  errors-in-variables  machine-learning  classification  entropy  information-theory  mutual-information 

Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.