Câu hỏi được gắn thẻ «normal-distribution»

Phân phối bình thường, hoặc Gaussian, có hàm mật độ là một đường cong hình chuông đối xứng. Đây là một trong những phân phối quan trọng nhất trong thống kê. Sử dụng thẻ [Normality] để hỏi về kiểm tra tính quy tắc.


1
R / mgcv: Tại sao các sản phẩm tenor te () và ti () tạo ra các bề mặt khác nhau?
Các mgcvgói cho Rcó hai chức năng cho phù hợp tương tác sản phẩm tensor: te()và ti(). Tôi hiểu sự phân công lao động cơ bản giữa hai người (phù hợp với sự tương tác phi tuyến tính so với việc phân tách tương tác này thành các hiệu ứng …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 





1
Về sự tồn tại của UMVUE và sự lựa chọn của ước lượng bình quân trong dân số
Hãy là một mẫu ngẫu nhiên rút ra từ dân nơi .(X1,X2,⋯,Xn)(X1,X2,⋯,Xn)(X_1,X_2,\cdots,X_n)N(θ,θ2)N(θ,θ2)\mathcal N(\theta,\theta^2)θ∈Rθ∈R\theta\in\mathbb R Tôi đang tìm UMVUE của .θθ\theta Mật độ chung của là(X1,X2,⋯,Xn)(X1,X2,⋯,Xn)(X_1,X_2,\cdots,X_n) fθ(x1,x2,⋯,xn)=∏i=1n1θ2π−−√exp[−12θ2(xi−θ)2]=1(θ2π−−√)nexp[−12θ2∑i=1n(xi−θ)2]=1(θ2π−−√)nexp[1θ∑i=1nxi−12θ2∑i=1nx2i−n2]=g(θ,T(x))h(x)∀(x1,⋯,xn)∈Rn,∀θ∈Rfθ(x1,x2,⋯,xn)=∏i=1n1θ2πexp⁡[−12θ2(xi−θ)2]=1(θ2π)nexp⁡[−12θ2∑i=1n(xi−θ)2]=1(θ2π)nexp⁡[1θ∑i=1nxi−12θ2∑i=1nxi2−n2]=g(θ,T(x))h(x)∀(x1,⋯,xn)∈Rn,∀θ∈R\begin{align} f_{\theta}(x_1,x_2,\cdots,x_n)&=\prod_{i=1}^n\frac{1}{\theta\sqrt{2\pi}}\exp\left[-\frac{1}{2\theta^2}(x_i-\theta)^2\right] \\&=\frac{1}{(\theta\sqrt{2\pi})^n}\exp\left[-\frac{1}{2\theta^2}\sum_{i=1}^n(x_i-\theta)^2\right] \\&=\frac{1}{(\theta\sqrt{2\pi})^n}\exp\left[\frac{1}{\theta}\sum_{i=1}^n x_i-\frac{1}{2\theta^2}\sum_{i=1}^nx_i^2-\frac{n}{2}\right] \\&=g(\theta,T(\mathbf x))h(\mathbf x)\qquad\forall\,(x_1,\cdots,x_n)\in\mathbb R^n\,,\forall\,\theta\in\mathbb R \end{align} , trong đó và .h(x)=1g(θ,T(x))=1(θ2π√)nexp[1θ∑ni=1xi−12θ2∑ni=1x2i−n2]g(θ,T(x))=1(θ2π)nexp⁡[1θ∑i=1nxi−12θ2∑i=1nxi2−n2]g(\theta, T(\mathbf x))=\frac{1}{(\theta\sqrt{2\pi})^n}\exp\left[\frac{1}{\theta}\sum_{i=1}^n x_i-\frac{1}{2\theta^2}\sum_{i=1}^nx_i^2-\frac{n}{2}\right]h(x)=1h(x)=1h(\mathbf x)=1 Ở đây, phụ thuộc vào …

2
Mong đợi của
Đặt , , , và độc lập. Kỳ vọng của gì?X1X1X_1X2X2X_2⋯⋯\cdotsXd∼N(0,1)Xd∼N(0,1)X_d \sim \mathcal{N}(0, 1)X41(X21+⋯+X2d)2X14(X12+⋯+Xd2)2\frac{X_1^4}{(X_1^2 + \cdots + X_d^2)^2} Rất dễ tìm thấy bằng cách đối xứng. Nhưng tôi không biết làm thế nào để tìm thấy kỳ vọng của . Bạn có thể vui lòng cung cấp một số gợi …

3
Hàm delta của Dirac có nên được coi là một lớp con của phân phối Gaussian không?
Trong Wikidata có thể liên kết các phân phối xác suất (giống như mọi thứ khác) trong một bản thể luận, ví dụ, phân phối t là một lớp con của phân phối t phi tập trung, xem, ví dụ, https://angryloki.github.io/wikidata-graph-builder/?property=P279&item=Q209675&iterations=3&limit=3 Có nhiều trường hợp giới hạn khác nhau, ví …




4
Điều này có đúng không? (tạo ra một Traussated-Norm-multivariate-Gaussian)
Nếu tức là X∈Rn, X∼N(0–,σ2I)X∈Rn, X∼N(0_,σ2I)X\in\mathbb{R}^n,~X\sim \mathcal{N}(\underline{0},\sigma^2\mathbf{I})fX(x)=1(2πσ2)n/2exp(−||x||22σ2)fX(x)=1(2πσ2)n/2exp⁡(−||x||22σ2) f_X(x) = \frac{1}{{(2\pi\sigma^2)}^{n/2}} \exp\left(-\frac{||x||^2}{2\sigma^2}\right) Tôi muốn một phiên bản tương tự của phân phối cắt ngắn-bình thường trong trường hợp đa biến. Chính xác hơn, tôi muốn tạo một ràng buộc định mức (đến một giá trị ) đa biến Gaussian Y st …


2
Ước tính khả năng tối đa của hiệp phương sai của dữ liệu thông thường bivariate khi giá trị trung bình và phương sai được biết là gì?
Giả sử chúng ta có một mẫu ngẫu nhiên từ một phân phối chuẩn bivariate có số không là phương tiện và là phương sai, vì vậy tham số chưa biết duy nhất là hiệp phương sai. MLE của hiệp phương sai là gì? Tôi biết nó phải giống như …

Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.