Câu hỏi được gắn thẻ «data-visualization»

Xây dựng các biểu diễn đồ họa có ý nghĩa và hữu ích của dữ liệu. (Nếu câu hỏi của bạn chỉ là về cách lấy phần mềm cụ thể để tạo hiệu ứng cụ thể, thì có khả năng nó không thuộc chủ đề ở đây.)


4
Mô hình lịch sử sự kiện rời rạc (Survival) trong R
Tôi đang cố gắng để phù hợp với một mô hình thời gian rời rạc trong R, nhưng tôi không chắc làm thế nào để làm điều đó. Tôi đã đọc rằng bạn có thể sắp xếp biến phụ thuộc theo các hàng khác nhau, mỗi hàng cho mỗi lần …
10 r  survival  pca  sas  matlab  neural-networks  r  logistic  spatial  spatial-interaction-model  r  time-series  econometrics  var  statistical-significance  t-test  cross-validation  sample-size  r  regression  optimization  least-squares  constrained-regression  nonparametric  ordinal-data  wilcoxon-signed-rank  references  neural-networks  jags  bugs  hierarchical-bayesian  gaussian-mixture  r  regression  svm  predictive-models  libsvm  scikit-learn  probability  self-study  stata  sample-size  spss  wilcoxon-mann-whitney  survey  ordinal-data  likert  group-differences  r  regression  anova  mathematical-statistics  normal-distribution  random-generation  truncation  repeated-measures  variance  variability  distributions  random-generation  uniform  regression  r  generalized-linear-model  goodness-of-fit  data-visualization  r  time-series  arima  autoregressive  confidence-interval  r  time-series  arima  autocorrelation  seasonality  hypothesis-testing  bayesian  frequentist  uninformative-prior  correlation  matlab  cross-correlation 


1
R hồi quy tuyến tính biến phân loại Biến ẩn giá trị
Đây chỉ là một ví dụ mà tôi đã bắt gặp nhiều lần, vì vậy tôi không có bất kỳ dữ liệu mẫu nào. Chạy mô hình hồi quy tuyến tính trong R: a.lm = lm(Y ~ x1 + x2) x1là một biến liên tục. x2là phân loại và có …
10 r  regression  categorical-data  regression-coefficients  categorical-encoding  machine-learning  random-forest  anova  spss  r  self-study  bootstrap  monte-carlo  r  multiple-regression  partitioning  neural-networks  normalization  machine-learning  svm  kernel-trick  self-study  survival  cox-model  repeated-measures  survey  likert  correlation  variance  sampling  meta-analysis  anova  independence  sample  assumptions  bayesian  covariance  r  regression  time-series  mathematical-statistics  graphical-model  machine-learning  linear-model  kernel-trick  linear-algebra  self-study  moments  function  correlation  spss  probability  confidence-interval  sampling  mean  population  r  generalized-linear-model  prediction  offset  data-visualization  clustering  sas  cart  binning  sas  logistic  causality  regression  self-study  standard-error  r  distributions  r  regression  time-series  multiple-regression  python  chi-squared  independence  sample  clustering  data-mining  rapidminer  probability  stochastic-processes  clustering  binary-data  dimensionality-reduction  svd  correspondence-analysis  data-visualization  excel  c#  hypothesis-testing  econometrics  survey  rating  composite  regression  least-squares  mcmc  markov-process  kullback-leibler  convergence  predictive-models  r  regression  anova  confidence-interval  survival  cox-model  hazard  normal-distribution  autoregressive  mixed-model  r  mixed-model  sas  hypothesis-testing  mediation  interaction 

1
Tại sao chúng ta tính giá trị Thông tin?
Tôi có dữ liệu với các biến phân loại và biến liên tục, nhưng là nhu cầu tìm giá trị thông tin trong phân tích dữ liệu giải thích. Chỉ cần đưa ra lý do tại sao chúng tôi tính toán giá trị thông tin cho từng biến khi bắt …


1
Mô hình học sâu nào có thể phân loại các danh mục không loại trừ lẫn nhau
Ví dụ: Tôi có một câu trong mô tả công việc: "Kỹ sư cao cấp Java ở Anh". Tôi muốn sử dụng một mô hình học tập sâu để dự đoán nó thành 2 loại: English và IT jobs. Nếu tôi sử dụng mô hình phân loại truyền thống, nó …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 




5
Cách tốt để biểu thị đồ họa cho một số lượng rất lớn các biểu dữ liệu được ghép nối là gì?
Trong lĩnh vực của tôi, cách thông thường để vẽ dữ liệu được ghép nối là một chuỗi các đoạn đường dốc mỏng, phủ nó với dải phân cách và CI của dải phân cách cho hai nhóm: Tuy nhiên, loại cốt truyện này trở nên khó đọc hơn rất …





Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.