Câu hỏi được gắn thẻ «prediction-interval»

Khoảng dự đoán (cũng là khoảng dự báo) là khoảng bao gồm giá trị tương lai (hoặc không biết, nhưng * có thể quan sát *) của một biến ngẫu nhiên với một số xác suất được chỉ định trước.




1
Cách tìm khoảng dự đoán GBM
Tôi đang làm việc với các mô hình GBM bằng gói caret và đang tìm kiếm một phương pháp để giải quyết các khoảng dự đoán cho dữ liệu dự đoán của tôi. Tôi đã tìm kiếm rộng rãi nhưng chỉ đưa ra một vài ý tưởng để tìm các …




1
R / mgcv: Tại sao các sản phẩm tenor te () và ti () tạo ra các bề mặt khác nhau?
Các mgcvgói cho Rcó hai chức năng cho phù hợp tương tác sản phẩm tensor: te()và ti(). Tôi hiểu sự phân công lao động cơ bản giữa hai người (phù hợp với sự tương tác phi tuyến tính so với việc phân tách tương tác này thành các hiệu ứng …
11 r  gam  mgcv  conditional-probability  mixed-model  references  bayesian  estimation  conditional-probability  machine-learning  optimization  gradient-descent  r  hypothesis-testing  wilcoxon-mann-whitney  time-series  bayesian  inference  change-point  time-series  anova  repeated-measures  statistical-significance  bayesian  contingency-tables  regression  prediction  quantiles  classification  auc  k-means  scikit-learn  regression  spatial  circular-statistics  t-test  effect-size  cohens-d  r  cross-validation  feature-selection  caret  machine-learning  modeling  python  optimization  frequentist  correlation  sample-size  normalization  group-differences  heteroscedasticity  independence  generalized-least-squares  lme4-nlme  references  mcmc  metropolis-hastings  optimization  r  logistic  feature-selection  separation  clustering  k-means  normal-distribution  gaussian-mixture  kullback-leibler  java  spark-mllib  data-visualization  categorical-data  barplot  hypothesis-testing  statistical-significance  chi-squared  type-i-and-ii-errors  pca  scikit-learn  conditional-expectation  statistical-significance  meta-analysis  intuition  r  time-series  multivariate-analysis  garch  machine-learning  classification  data-mining  missing-data  cart  regression  cross-validation  matrix-decomposition  categorical-data  repeated-measures  chi-squared  assumptions  contingency-tables  prediction  binary-data  trend  test-for-trend  matrix-inverse  anova  categorical-data  regression-coefficients  standard-error  r  distributions  exponential  interarrival-time  copula  log-likelihood  time-series  forecasting  prediction-interval  mean  standard-error  meta-analysis  meta-regression  network-meta-analysis  systematic-review  normal-distribution  multiple-regression  generalized-linear-model  poisson-distribution  poisson-regression  r  sas  cohens-kappa 

1
Làm cách nào để kết hợp một ngoại lệ đổi mới khi quan sát 48 trong mô hình ARIMA của tôi?
Tôi đang làm việc trên một tập dữ liệu. Sau khi sử dụng một số kỹ thuật nhận dạng mô hình, tôi đã đưa ra mô hình ARIMA (0,2,1). Tôi đã sử dụng detectIOhàm trong gói TSAtrong R để phát hiện một ngoại lệ đổi mới (IO) ở lần quan …
10 r  time-series  arima  outliers  hypergeometric  fishers-exact  r  time-series  intraclass-correlation  r  logistic  glmm  clogit  mixed-model  spss  repeated-measures  ancova  machine-learning  python  scikit-learn  distributions  data-transformation  stochastic-processes  web  standard-deviation  r  machine-learning  spatial  similarities  spatio-temporal  binomial  sparse  poisson-process  r  regression  nonparametric  r  regression  logistic  simulation  power-analysis  r  svm  random-forest  anova  repeated-measures  manova  regression  statistical-significance  cross-validation  group-differences  model-comparison  r  spatial  model-evaluation  parallel-computing  generalized-least-squares  r  stata  fitting  mixture  hypothesis-testing  categorical-data  hypothesis-testing  anova  statistical-significance  repeated-measures  likert  wilcoxon-mann-whitney  boxplot  statistical-significance  confidence-interval  forecasting  prediction-interval  regression  categorical-data  stata  least-squares  experiment-design  skewness  reliability  cronbachs-alpha  r  regression  splines  maximum-likelihood  modeling  likelihood-ratio  profile-likelihood  nested-models 


1
Tính toán các khoảng dự đoán khi sử dụng xác nhận chéo
Các ước tính độ lệch chuẩn được tính thông qua: SN= 1NΣNi = 1( xTôi- x¯¯¯)2-------------√.SN= =1NΣTôi= =1N(xTôi-x¯)2. s_N = \sqrt{\frac{1}{N} \sum_{i=1}^N (x_i - \overline{x})^2}. ( http://en.wikipedia.org/wiki/Stiteria_deviation#Sample_stiteria_deviation ) cho độ chính xác dự đoán được lấy mẫu từ xác nhận chéo 10 lần? Tôi lo ngại rằng độ chính xác …

1
Mô hình học sâu nào có thể phân loại các danh mục không loại trừ lẫn nhau
Ví dụ: Tôi có một câu trong mô tả công việc: "Kỹ sư cao cấp Java ở Anh". Tôi muốn sử dụng một mô hình học tập sâu để dự đoán nó thành 2 loại: English và IT jobs. Nếu tôi sử dụng mô hình phân loại truyền thống, nó …
9 machine-learning  deep-learning  natural-language  tensorflow  sampling  distance  non-independent  application  regression  machine-learning  logistic  mixed-model  control-group  crossover  r  multivariate-analysis  ecology  procrustes-analysis  vegan  regression  hypothesis-testing  interpretation  chi-squared  bootstrap  r  bioinformatics  bayesian  exponential  beta-distribution  bernoulli-distribution  conjugate-prior  distributions  bayesian  prior  beta-distribution  covariance  naive-bayes  smoothing  laplace-smoothing  distributions  data-visualization  regression  probit  penalized  estimation  unbiased-estimator  fisher-information  unbalanced-classes  bayesian  model-selection  aic  multiple-regression  cross-validation  regression-coefficients  nonlinear-regression  standardization  naive-bayes  trend  machine-learning  clustering  unsupervised-learning  wilcoxon-mann-whitney  z-score  econometrics  generalized-moments  method-of-moments  machine-learning  conv-neural-network  image-processing  ocr  machine-learning  neural-networks  conv-neural-network  tensorflow  r  logistic  scoring-rules  probability  self-study  pdf  cdf  classification  svm  resampling  forecasting  rms  volatility-forecasting  diebold-mariano  neural-networks  prediction-interval  uncertainty 

2
Tính toán dự đoán
Tôi có dữ liệu sau đây nằm ở đây . Tôi đang cố gắng tính khoảng tin cậy 95% về độ tinh khiết trung bình khi tỷ lệ hydrocarbon là 1,0. Trong R, tôi nhập như sau. > predict(purity.lm, newdata=list(hydro=1.0), interval="confidence", level=.95) fit lwr upr 1 89.66431 87.51017 91.81845 Tuy …

1
Làm thế nào để so sánh các sự kiện quan sát so với dự kiến?
Giả sử tôi có một mẫu tần số gồm 4 sự kiện có thể xảy ra: Event1 - 5 E2 - 1 E3 - 0 E4 - 12 và tôi có xác suất dự kiến ​​của các sự kiện của tôi sẽ xảy ra: p1 - 0.2 p2 - 0.1 …
9 r  statistical-significance  chi-squared  multivariate-analysis  exponential  joint-distribution  statistical-significance  self-study  standard-deviation  probability  normal-distribution  spss  interpretation  assumptions  cox-model  reporting  cox-model  statistical-significance  reliability  method-comparison  classification  boosting  ensemble  adaboost  confidence-interval  cross-validation  prediction  prediction-interval  regression  machine-learning  svm  regularization  regression  sampling  survey  probit  matlab  feature-selection  information-theory  mutual-information  time-series  forecasting  simulation  classification  boosting  ensemble  adaboost  normal-distribution  multivariate-analysis  covariance  gini  clustering  text-mining  distance-functions  information-retrieval  similarities  regression  logistic  stata  group-differences  r  anova  confidence-interval  repeated-measures  r  logistic  lme4-nlme  inference  fiducial  kalman-filter  classification  discriminant-analysis  linear-algebra  computing  statistical-significance  time-series  panel-data  missing-data  uncertainty  probability  multivariate-analysis  r  classification  spss  k-means  discriminant-analysis  poisson-distribution  average  r  random-forest  importance  probability  conditional-probability  distributions  standard-deviation  time-series  machine-learning  online  forecasting  r  pca  dataset  data-visualization  bayes  distributions  mathematical-statistics  degrees-of-freedom 

1
Khoảng dự đoán cho kết quả của hồi quy logistic với đáp ứng nhị thức
Giả sử chúng ta có một mô hình hồi quy logistic: P(y=1|x)log(p1−p)=p=βxP(y=1|x)=plog⁡(p1−p)=βx\begin{align} P(y=1\vert\mathbf{x}) &= p \\ \log\left(\frac{p}{1-p}\right) &= \boldsymbol{\beta}\mathbf{x} \end{align} Cho một mẫu ngẫu nhiên có kích thước , chúng ta có thể tính các khoảng tin cậy cho và các khoảng dự đoán tương ứng cho , với một …

Khi sử dụng trang web của chúng tôi, bạn xác nhận rằng bạn đã đọc và hiểu Chính sách cookieChính sách bảo mật của chúng tôi.
Licensed under cc by-sa 3.0 with attribution required.